EXERCISES FOR THE COURSE
“PROPERTY (T), FIXED POINT PROPERTIES AND
STRENGTHENING”

IN WROCLAW (OCTOBER, 2-13, 2017)

MASATO MIMURA

Problems with # might be more difficult than the other ones. Problems with * might
be specially educationally good.

Throughout this lecture series and this exercise session, all topological groups are
assumed to be Hausdorff; we equip finitely generated groups with discrete topology.
For p € [1, 00|, we denote by ¢, the real /,-space based on an infinite countable set
(so, £, is isometrically isomorphic to £,(N,R)).

1. EXPANDER GRAPHS
In this section, let I' = (V, E) be a finite (|V| < oo and |E| < 00), non-oriented
graph, where V' is the set of vertices and F is the set of non-oriented edges. Denote by
the set of oriented edges. (For each non-oriented edge, we put an orientations on

it, and regard the resulting oriented edge as an element in ﬁ We do this procedure
for both of possible two orientations of a non-oriented edge; so, each non-oriented
edge results in two oriented edges.) Set n = nr to be |V| and k£ = kr to be the
maximum degree of I'. Denote by A = Ar the (non-normalized) graph Laplacian.
Namely,

1
A= §d*d 62(‘/, R) — 62(‘/, R),
where d: l5(V) — £of ﬁ R) is the discrete gradient operator
(@)(@) = F(@) = f(T7), feb(VR), TeE,

and d*: fg(ﬁ,R) — (5(V,R) is its adjoint. By A\g < Ay < --+ < \,_1, we mean the
enumeration of the eigenvalues of A with multiplicities.

Problem 1 (Matrix form of A). Prove that A = D— A. Here D = Dr is the degree
operator (matrix), i.e.,

Do_ deg(u) if u =,
we 0 otherwise
and A = Ap is the adjacent operator (matrix), i.e., A, , is the number of edges in

ﬁ that are from u to v. We take the convention that a self-loop contributes to the
degree twice.
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(Hint: For u,v € V, compute (Ady, ) e (v)-)
Problem 2. Show that \y = 0. Moreover, prove that A\; > 0 if I' is connected.
Problem 3. Prove that \,_; < 2k.

Problem 4. Let K, be the complete graph of n vertices (each distinct pair of
vertices is connected by an exactly one edge). Compute Ag, ..., \,_1.

Problem* 5. Verify one side of the discrete Cheeger inequality:

1
- < h.
2
Here h = h(T") is the (non-normalized and vertex) isoperimetric constant, namely,
0A V
h(F):inf{%:AQV, 1§]A|<|7|—|—1}.

Here DA means the edge boundary: A = {€ € E. 7 ¢ A @t eV\ A}

(Hint: Apply the variational formula for \; to a certain function f € ¢5(V).)
Problem” 6. Prove the other side of the discrete Cheeger inequality:

h < +/2k\;.

Problem 7. Show that the notion of (ordinary) expanders coincides with that of
Banach ({2, 2)-anders.

Problem 8 (Fréchet embedding). Show that every I embeds isometrically into (7.
Here (n = nr and) ¢2, denotes the n-dimensional real /..-space.

Problem* 9 (Lazy random walk on expanders). Let (I';, = (Vin, Em))men be an
expander family such that all T',, are simple (no self-loops or multiple edges) and
k-regular (for a fixed k > 2). Set ¢ > 0 to satisfy ¢ < A(I';,) for all m. Set
N = | Vi

For each m, fix w,, € V;,, (base point). Then, the lazy random walk on T',, starting
at w,, is defined as follows: the random walk starts at w,, at time ¢t = 0. From time
[ to time [ 4+ 1(I € N), stay at the same vertex as at ¢ = [ with probability 1/2;
with probability 1/2, move to one of the adjacent vertices that is chosen uniformly
at random (independently from the history of the walk in the past).

Set ,u%) to be the probability distribution of the lazy random walk at time [, i.e.,
for v € V,,, qu) (v) is the probability that the lazy random walk is at v at time ¢ = [.
Regard pl) as a (norm 1) vector in ¢1(V},,), and write it as p). Let v, be the vector
in ¢1(V,,) corresponding to the uniform distribution on V,,, namely, v,,(v) = 1/n,,
for all v € V,,,.

In this exercise, we define the mizing time t,, for the lazy random walk above on
[, in the following manner:

1
tm = min{l eEN:pY —v, |, < —} :
3N,

Here || - ||; means the ¢;-norm.
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(1) Show that for all m, t,, > lolg—”,:“” -1
og

(Hint: If ||l — v]1 < 3o, then in particular, for every v € V,, wH(w) >0.)

(2) Describe the Markov operator M, for the lazy random walk above on I',, in
terms of A,, = Ar,,. In other words, find an operator M,, acting on ¢;(V},)
such that for all [ € N,

pi) = My (= My, ).
(3) Show that for all m,
log(6m,y,)
" —log(l—i)'

Since for 0 < 6 < 1, —log(1 —¢) > 6 holds, we conclude that for ezpander graphs,
the mizing times t,, for lazy random walks on I',, have the order

tm e log ny,,

which is minimal. (This means that there exist ¢ > 0 and C' > 0, possibly depending
on €, such that for all m,

clogn,, <t, < Clogn,,
holds true.)

By this order equality, we say that “expanders have the best mizing property.”

In what follows in this section, exercises are on preliminaries of the contents of
further sections. They are on elementary groups (over rings) and Banach spaces.

Problem* 10 (Commutator relation on elementary groups). Let n > 2 and R be an
associative ring with unit. For i,j € [n](={1,2,...,n}) with i # j and for r € R,
denote by €] ; the matrix in Mat,x,(R) whose diagonal entries are 1, (i, j)-th entry
is r, and all other ones are 0. Recall that the elementary group E(n, R) is defined
as the subgroup of GL(n, R) generated by {e}; :i # j € [n], r € R}.

Prove that for distinct i, j, k € [n] and for r, s € R,
(#) [ei €5k) = €ik:
Here our convention of group commutators is: [g, h] = ghg=*h™t.

Problem 11. Show that /5 is uniformly convex, and determine the best possible
d:(0,2] = R-p (modulus of convexity).

Problem 12. Let X = /5- @@2 {s,,. This means that

X = {(Sn)n>2 : gn S €2n7 Z an“%n < OO}

n>2
with the norm ||(&,).|lx = \/ZnZQ 1€ 13-
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(1) Is X strictly convex? Is X reflexive?

(Need not prove in details.)

(2) Show that for every ¢ > 0, all graph families (I';, = (Vi, Ei))m (including
expander families) admit (1 + €)-biLipschitz embedding into X, i.e., for each m,
there exists f,,: V,, — X such that for all v, w € V,,,

1
1+e€

Here dr,, denotes the graph metric (shortest path metric) with respec to I';,, on
Vin.

dr,, (v, w) < |[fm(v) = fm(w)|x < (1+ €)dr,, (v, w).

(Hint: Problem 8.)

Problem 13. Construct a superreflexive Banach space that is not uniformly convex.

(Enflo’s characterization of superreflexivility (being isomorphic to a uniformly con-
vex Banach space) can be freely used.)

2. PROPERTY (T)

Problem* 14 (Orthogonal complement of invariant part of normal subgroups). Let
G be a group, and N < G be a (closed) normal subgroup of G. Let m: G — U(H)
be a unitary representation of G.

Show that the orthogonal decomposition associated with 7(N)-invariant vectors,
H=H"N @ (H" ™))L is in fact a decomposition as G-representations. Namely, for
all £ € H™™) and for all n € (H™™))L, for all g in G,

m(g)€ € H™N) and m(g)n € (’HW(N))L.

Problem 15 (Left regular representation). Let G be a locally compact group and
v be a (left-invariant) Haar measure. Prove that the left regular representation

)\G: G — U(LQ(G, l/)),
(Aa(9)6)(x) =&(g7'x), geG, 2 €@, £e Ly(G,v)

is indeed a unitary representation. Here the coefficient field of Ly(G,v) is C.

(Show that it is unitary and that it is a group representation.)

Problem* 16. Let G = R, and endow it with the Lebesgue measure. Show that
the left regular representation A = Ag; of R on L;(R),

(Ar1(9))(z) =&(x—g), g€R, z€R, € Li(R)
is strongly continuous. Namely, whenever g,, — ¢ in R as m — oo, for every

¢ € Li(R),
1A (gm)E — AMg)E|li = 0 as m — oo.

Here the coefficient field of L;(R) is R.
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Problem 17. Is the representation A = Ag; as in Proposition 16 norm continuous?
This means, if g,, — g on R as m — oo, does it follow that

[A(gm) — AM9)le@i®) — 0
as m — oo’

Here || - [|g(z,(r)) denotes the operator norm on B(L;(R)) (the algebra of bounded
linear operators on Li(R)), namely, for T € B(L,(R)),

_ 1T¢]]x
= in :
ce®\0} [l
Problem* 18 (Contragredient representation). Let p: G — O(X) be an isometric

linear representation. Here X is a Banach space and O(X) denotes the group of
surjective linear isometries on X. Show that p': G — O(X*), defined by for ¢ € X*

and for £ € X,
(' (9)01€) = (elp(g™")E)
is an isometric linear representation on X*.
Here X* means the (continuous) deal of X, and (:|-): X* x X — K is the duality
coupling. (Here K is the coefficient field, R or C.)

1T'||B(L, (=)

This p' is called the contragredient representation of p.

Problem* 19 (Contragredient representation and strong continuity). For A = Ag
as in Proposition 16, describe AT. Is AT strongly continuous?

Problem* 20. Let G be a topological group and A, B C G be non-empty compact
subsets of G. Show that then AB C G is compact. Here AB denotes the set of all
elements of the form ab(€ G), where a € A and b € B.

Problem 21. Construct a counterezample to the following assertion: “Let G be
a compactly generated group and S be a compact generating set of G such that
eq € S =571 Then, for every compact subset K of G, there exists n € N such that
S*"DO K.

Here S™ denotes the set of all elements that can be written as the product of n
elements (possibly overlapping) of S.

(Remark. As explained in the lecture, the assertion above holds true, provided that
G is locally compact or Polish.)

Problem* 22 (Property (T) and continuous image of homomorphisms). Let G
and H be topological groups, and let ¢: G — H be a continuous homomorphism.
Assume that G has property (T).

Verify that then ¢(G)(C H) (the closure of ¢(G) in H) has property (T) (as a
topological group in the relative topology from that of H).

Problem* 23 (Property (T) and amenability). Let G be a topological group with
property (T), and let A be a locally copact amenable group. Show that then for
every continuous homomorphism ¢: G — A, the image ¢(G) is relatively compact
in A, ie., ¢(G) is compact.
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(Remark. The assertion above is false if A is not locally compact. One example
given by Bekka is the unitary group U(H) for an infinite dimensional separable
Hilbert space H, endowed with the weak operator topology; it has both property
(T) and the amenability.)

Problem* 24 (Compact groups have “property (Tx)”). Let G be a compact group.
Let X be a Banach space and p: G — O(X) be a strongly continuous isometric linear
representation. Assume that there exists ¢ € X such that

sup [|p(9)€ — &I < [[€]l-
geG
Show that then X*(@) £ {0}.

(Hint: Consider a way to construct a p(G)-invariant vector. Note that this is helpful
only if the resulting vector is non-zero.)

Moreover, by using the fact proved above, show that all compact groups have
property (T).
Problem? 25 (Property (T) and finite generation). Prove the following: “If a
discrete group G has property (T), then G is finitely generated.”

(Hint: If this in full generality is difficult, then first consider the case where G is
countable.)

(Remark. A similar argument shows that a locally compact group with property
(T) must be compactly generated.)

Problem 26. Let G be a topological group and H be a dense subgroup of GG. Prove

or disprove the following assertions.

(1) “If H has property (T) as a discrete group, then G has property (T) (as a
topological group in the original topology).”

(2) “If G has property (T), then H has property (T) as a discrete group.”

Problem 27 (Heredity from a lattice to the original group: discrete case). Let G
be a discrete group and H be a finite index subgroup of G. Show that if H has
property (T), then so does G.

Problem? 28 (Heredity to lattices: discrete case). Let G be a discrete group and
H be a finite index subgroup of G. Show that if G has property (T), then so does
H.

(Hint: Complete the outline that is given in the lecture.)

3. KAZHDAN CONSTANT

Problem* 29. Let G be a topological group, and Sy, Sy are compact generating
subsets of G which are symmetric. Assume that there exists n € N such that



EXERCISES ON (T) 7
S% O 5;. Show that for such n,
1
K(G,Ss) > EIC(G, S1).

Problem 30 (Kazhdan constant for the pair of compact groups and themselves).
Let G be a non-trivial compact group. Show that

K(G,G) > V2.
(Hint: Modify the argument in Problem 24 for the case where X is a Hilbert space.)

Problem* 31 (Property (Tx)). Let G be a topological group and X be a (non-
empty) class of Banach spaces. The notion of property (Ty) is defined as follows.
(This is a version by M. de la Salle. The original formulation was given by Bader—
Furman—Gelander—-Monod.)

Definition (Property (Tx)). The group G is said to have property (Tx) if the
following holds true: For every X € X and for every strongly continuous isometric
linear representation p: G — O(X), there exist a compact subset K C G and € > 0
such that for all £ € X,

dispff(f) > EHEHX/XP(G)'

Here ¢ + € is the natural quotient map X — X/X?(%) and || - | x/xr denotes the
quotient norm

£ = inf :
[€llxxoer = ik € +nllx

(1) Show that if X = Hilbert, that is, the class of all Hilbert spaces, then property
(Taiert) coincides with property (T).

(2) Show that Z has property (Tgz). Here R? means the class consisting only of R?,
which is the 2-dimensional real Hilbert space.

(Remark. In fact, every group G has property (Tgz).)

(3) Assume that there exists p € [1,00) such that X is closed under taking at
most countable {,-sum. Namely, for (X,,),eny with X,, € X, the {,-direct sum
(- P, X, and finite ¢, sums (,- P, ., X, for k& € N all belong to X . Show
then the following assertion: “Assume that G is finitely generated. If G has prop-
erty (Tx), then for every finite symmetric generating set S of G, the following
quantity defined by

disp?
K+(G,S) = inf disp,(©).
P eexX\X¢() ]| x0e)
1s strictly positive.” Here p runs over all strongly continuous isometric linear
G-representation on X, where X € X, such that X?(@) % X. (If there is no such
p, then define Ly (G, S) as +00.)

(Remark. If G is discrete, then it is automatic that G above is finitely generated
under the assumption above on X. Prove this if you are interested in it.)
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This quantity x (G, S) may be said as the Kazhdan constant for (G, S) with
respect to X .
(4) Construct a counterezample to the assertion of (3) when we drop the condition
on X on the closedness by taking ¢,-sums.

Problem* 32 (Property (Tx) and Banach (X, p)-anders). Let X be a (non-empty)
class of Banach spaces and p € [1,00). Assume that X is closed under taking at
most countable £,-sum. Show that then the following analog of Margulis’s theorem
holds true:

“Let G be a finitely generated group and S be a finite symmetric generating set
of G. Assume that G has property (Tx) and that there exists a family of surjective
homomorphisms (¢p: G = Gp)men such that |G| < oo and lim, o |G| = 0.
Then for every X € X, the family (', = Cay(Gm, ¢m(S)))men forms that of Banach
(X, p)-anders.”

The following exercises in this section are on relative property (T).
Problem 33. As also mentioned in the lecture, it is well-known that the pair
SL(2,7Z) x Z* > 7Z?

has relative property (T). Here SL(2,Z) acts on Z* by natural matrix multiplica-
tions. Show that SL(2,7Z) x Z? itself does not have property (T).

Problem? 34 (Property (T) and group extensions). Let
I-N5G50Q—1

be a short exact sequence among locally compact groups. Through ¢, we regard N
as a closed normal subgroup of G. Prove the following assertions.

(1) If G has property (T), then G &> N has relative property (T) and ) has property

(T).
(2) Conversely, if G > N has relative property (T) and if @ has property (T), then
G has property (T).

4. PROPERTY (Fy)

Problem* 35 (Affine isometric actions and cocycles). Let G be a group, and X be
a Banach space. Let a: G ~ X be an affine action of G on X, that means, for each
g € G, a(g) is of the form

a(g) - §=p(g)§ +blg) for§ e X,
where p(g) € B(X) and b(g) € X; furthermore, for all g, h € G,

a(g) - a(h) = a(gh).

Assume besides that « is isometric, namely, for every g € G and for all £, € X

la(g) - € = alg) - nll = 1€ = nll-
(1) Prove that for all g € G, p(g) is isometric.
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(2) Prove that p: G — O(X) is a representation (i.e., it is a group homomorphism).

(Hint: Suppose that it is not the case. Then there exist g,h € G and £ € X
such that p(g)p(h) — p(gh)€ # 0. Draw a contradiction from this.)
(3) Prove that a: G — X is a p-cocycle. Namely, for all g, h € G,

b(gh) = b(g) + p(g)b(h).

Problem* 36. Let p: G — O(X) be an isometric linear representation of a group G
on a Banach space X. Let p: G — X be a p-cocycle. Prove the following formulae.
(1) b(eg) = 0.

(2) Forall g € G, b(g™!) = —p(g)~"b(g).

(3) For all n € N>y and for all gq,...,9, € G,

b(g1 -+ gn) = blg1) +Zp +9r-1)b(gr).

In particular,
16(g1 - -~ gn) | < Z 16(gr)|

Problem 37. Let G be a topological group, and G' > H' > H be closed subgroups
of G. Let X be a (non-empty) class of Banach spaces. Show that G > H has
property (Fx) if G’ > H' has property (Fx).

Problem 38 (Property (Fy) and finite generation). Let X" is a (non-empty) class
of Banach spaces that is closed under taking at most countable ¢,-sums for some
p € [1,00). Assume that G is a countable discrete group. Show that if G has
property (Fx), then G is finitely generated.

In particular, if such G has property (Fimpert), then G is finitely generated.

(Remark. The conclusion is known to be false if we drop the countability assumption
on GG. Compare with Problem 25. For instance, it is known that the group Symy,;(N)
of all bijections on N has property (Fyimpert) as a discrete group. For the proof,
see Bergman, “Generating infinite symmetric groups” and de Cornulier, “Strongly
Bounded Groups and Infinite Powers of Finite Groups”.)

Problem 39. Construct a counterexample to the assertion of Problem 38 if we drop
the closedness assumption on X' by taking ¢,-sums.

Problem* 40 (Another proof of the Guichardet’s theorem: discrete group case).
Let G be a countable discrete group. Here we will prove the Guichardet’s direction

“G fails to have (T) = G fails to have (Fyupert)”

in a different manner to one exhibited in the lecture.

(1) Show that we may assume that G is finitely generated.
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Therefore, we assume so, and fix a finite symmetric generating set S of G.
Suppose that G fails to have (T). Then for every n € N, there exist a unitary

representation 7,: G — U(H,) and a vector &, € H,, \ HZ”(G) such that
diSp;S;n (fn) < 2_2nH£_nHHn/Hgn(G)-

(2) Show that for every n, we may assume that [|&, () = 2"

54

n/H

(3) Construct a Hilbert space H and an affine isometric action a: G ~ H of G on
‘H that has no global fixed point.

This shows that G fails to have (Fyjipert), as desired.

(Remark. This proof extends to that of
Property (Fy) = property (Tx)

for countable discrete groups, provided that X is stable under taking at most count-
able £,-sum for some p € [1,00). This assumption on X may be removed if we argue
in the way described in the lecture. However, the current proof may be generalized
to more general situation, for instance, fixed point properties with respect to certain
classes of non-linear metric spaces.)

Problem* 41 (Lemma of the Chebyshev center). Let X be a dual Banach space
(i.e., isometrically isomorphic to the dual Y* of some Banach space V). Let A C X
be a non-empty bounded subset of X.
(1) For each £ € X, define
Re = sup ¢ — a]
acA

and define R = iIleeX Rﬁ.

We will show that R is attained, namely, there exists & € X such that
R: = R.
(1) Fix £ € X. Show the following equivalence for 7" > 0:

T>R. <= ¢e()Ba0).
acA
Here B(n,r) denotes the closed ball of radius r centered at n in X.
(2) Show that
OA:{§6X2R§:R}

is non-empty.

(Hint: Use compactness in a nice way. Which topology can we use?)
(77) Assume besides that X is uniformly convex. Show that then C}y is a singleton,
i.e., C'y consists of exactly one point.
Note that if X is uniformly convex, then X is reflexive and in particular a dual

Banach space. In that case, the unique point in Cy is called the Chebyshev center
of Ain X.

Problem 42. Construct a counterezample to the conclusion of (i) in Problem 41
when we drop the uniform convexity assumption on the dual Banach space X.
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Problem* 43. Let G be an (arbitrary) group and X be a uniformly convexr Banach
space. Let p: G — O(X) is an isometric linear representation. Assume that there
exists £ € X such that

sup [|p(9)€ — &I < [&]l-
geG
Show that then X&) £ {0}.

(Remark. Compare with Problem 24.)

Problem 44. Let (1 :={£ € (1(N) : > &(n) = 0}. Then as we see in the lecture,
every countable infinite (discrete) group G' admits an affine isometric action on ¢ g
without global fixed points such that orbits are bounded.

Explain what is wrong if we consider ¢y := {€ € (5(N) : " &(n) = 0} and if
we would deduce that same construction can be made for actions on Hilbert spaces.
(By Problem 41, this deduction must be wrong.)

Problem 45 (Niblo-Reeves theorem). Extend the argument of Watatani’s theorem
on groups acting on simplicial trees, and prove the following theorem.

Theorem . Let G be a discrete group. Let Y be a CAT(0) cube complex. Let
B: G Y be a cellular action, namely, an action by cellular automorphisms. Fiz a
vertez vy in Y(©,

Then, for every p € [1,00), there exists an affine isometric action

ap: G

on L, that satisfies the following condition on the orbit of the origin 0 € {,: For
every g € G,

lowp(9) - Oll, = (2d1(vo, B(g) - v0)) /" .

Here, d; means the (1-metric on YO, namely, the shortest path metric based on the
graph being the 1-skelton YV of Y.

From this, draw the following conclusion: “If a discrete group G acts on a finite
dimensional CAT(0) cube complex'Y cellularly without fized points (on'Y'), then for
all p € [1,00), G fails to have property (Fy,).”

(Remark. Later, de Cornulier extended the last conclusion above to the case where
Y is infinite dimensional. See arXiv:1302.5982 for details.)

Problem? 46 (Gurchardet’s theorem for relative properties). Extend the proof of
Guichardet’s direction (“(Fipert)=(T)”) to relative case and prove the following.

“Let G be a finitely generated group and H is a normal subgroup of G. Then,
G ©> H has relaive property (T) if it has relative property (Fyimert).”

(Remark. As mentioned in the lecture, the proof here may be further extended to
the case where G is countable (discrete) by means of the open mapping theorem for
Fréchet spaces.)
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Problem? 47 (Delorme’s theorem for discrete groups). We will show the Delorme’s
direction
“Property (T) = Property (Fyibert)”
for discrete groups.
For this, we briefly give the definition of tensor products of (real) Hilbert spaces.
Let Hi,Hs be real Hilbert spaces. Then, equip the algebraic tensor product of H;
and H, with the following inner product

(&1 @1, & @ m2) = (&1, §a)ay (115 M) s

(&1,& € Hy and 11,12 € Hsy). This means, we extend the definition above to real
linear combinations by linearity (this definition of the inner product is well-defined).
Finally, take the completion of the algebraic tensor product in the norm given by

IEl = V(& 2)
(for Z in the algebraic tensor product). This completed space is equipped with the
inner product structure defined as above, and hence is a real Hilbert space. We
simply write this resulting space as H; ® Hso, and call it the (real) Hilbert space

tensor product.
Now let H be a real Hilbert space. Then, define

Exp(H) =R @y, H Bp, H @ H Dp, H®? Do, H Dy, -+ -,

where @y, means the fy-sum, and H®" denotes the n-time tensor product (this is
well-defined). (This space Exp(#) is a real Hilbert space, and sometimes called the
(real) full Fock space.) For each £ € H, set

1 1 1
EXp(f):1@5@75@5@?5(85@6@76@6@5@5@"‘

N RVET Vi

and )
exp(©) = ex (155 ) Bo(e) € Bro0)
(1) For all £,n € H, show that ||exp(§)|| = 1 and that

§—n|”
fexp(€).expin) = exp (-1E570)

Set H, is the algebraic (real) span of {exp(¢) : & € H}, which is a (real)
possibly non-closed subspace of Exp(H). Define H as the closure of H, inside
Exp(#). This is a closed subspace of Exp(H), and hence is a real Hilbert space.

(2) Let a: G ~ H is an affine isometric action. For each g € G, define a (linear)

operator 7, 0(g) on Ho by

Ta0(0) (Z ckexp<§k>> = 3" crexplalg) - &).

k k

Here the sum above is a finite sum and ¢, € R.
Show the following.
(a) For all g,h € G, ma0(9)Ta0(h) = Tao(gh).
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(b) For all g € G, ma(g) is an isometric (linear) operator on Ho.
(Strictly speaking, the well-defindness of 7, ¢ is ensured only after we prove (b).)

By (b), for every g € G, m,,(g) uniquely extends to an operator

Tal(g): H — 7/{\,

which is orthogonal (real unitary). By (a), this gives an orthogonal representa-
tion

To: G — O(H).

(3) Assume besides that H*(% = (). Show that then

T 2 1g.

(4) Complete the proof of Delorme’s direction. More precisely, suppose that H*(@) =

() in the setting as in (2). Then, construct a unitary representation p on some
Hilbert space $) such that p 2 15 but p = 14.

(Hint. In general, it is not clear whether the m, above weakly contains 1. In-
stead, we can create a new representation out of m,’s. If you are careful, then
you will notice that resulting representation is (real) orthogonal but not (com-
plex) unitary. If you hope to modify this small issue, then there is a procedure
called “complexification” of orthogonal representations to unitary ones.)

Problem” 48 (Haagerup property and a-T-menability). Let G be a countable
discrete group. The following properties can be seen as extreme negations (among
non-compact groups), respectively, to property (T) and to property (Faimpert)-

Definition . (1) The group G is said to have the Haagerup property if there

exists a unitary Cy-representation 7: G — U(H) such that 7 = 15. Here a
unitary representation p: G — U($)) is said to be Cy if for all £,n € 9,

(p(9)€;m) — 0 as g— oo.

Here “g — 00” means g moves in any direction with escaping from every
compact (finite) subset of G. More precisely, “lim, .. (p(¢)&,n) = 0” means
that for every € > 0, the set

{g€G:[{p(9)€;n)] = €}

is relatively compact (finite).

(2) The group G is said to be a-T-menable if there exists a metrically proper
affine isometric action of G on some Hilbert space. Here, an isometric action
a: G ~ $ is said to be metrically proper if for some (equivalently, for every)

£€N,

le(g) - €l = 00 as g — oo,
More precisely, this means that for every C' > 0, the set

{g€G:lalg)- &l <C}

is relatively compact (finite).
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Show that (for countable discrete groups), the Haagerup property and the a-T-
manebility are equivalent.

Problem* 49. Show that Z has the Haagerup property by showing it with the
original definition and by showing the a-T-manebility.

Problem* 50. Show that F; (the non-abelian free group of rank 2) is a-T-maneble.
Problem* 51. Show that SL(2,Z) is a-T-maneble.

Problem* 52 (Properties of Haagerup property/a-T-maneblity 1). (1) Let G be a
countable (discrete) group that is a-T-maneble. For a (closed) subgroup H of
G, does it follow that H is also a-T-maneble?

(2) Let G be a countable (discrete) group that is a-T-maneble. For a group quotient
Q@ of G, does it follow that @) is also a-T-maneble?

Problem* 53 (Properties of Haagerup property/a-T-maneblity 2). Prove or dis-
prove the following assertion: “The a-T-manebility for countable (discrete) groups
1s closed under group extension. Namely, for a short exact sequence among countable
groups,

l1->N—->G—Q—1,

if N and Q) are a-T-maneble, then so is G.”

5. PROPERTY (Ty) AND PROPERTY (Fy)

Problem* 54 (Isometric renorming with respect to uniformly bounded represen-
tations). Let X be a Banach space. Let G be a group, and p: G — GL(X) be a
uniformly bounded linear representation, that means, there exists C' > 0 such that
for all g € G,

1o(9)lsx) < C.
Prove that the following norm || - ||,

1€]l, = sup [lp(9)éllx, €€ X,
geG

indeed gives a new norm on X, and that || - ||, is equivalent to || - || x, that means,
the (set theoretical) identity map

idy: (X, - 1lx) = (X, - 1],)

gives an isomorphism (not necessarily isometric) between Banach spaces. (This map
is bijective linear map, and so the only issue is on continuity.) Moreover, show that
p is isometric in the norm || - || ..

Therefore, in the setting above, there exist a Banach space Y that is isomorphic
to X and a bijective linear operator T: X — Y such that T"and 7! are continuous
and the representation given by

o=TopoT™!

18 isometric.
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Problem* 55. Prove the following: “If (X, ||-||x) is uniformly convex in the setting
of Problem 54, then the resulting norm || - ||, is again uniformly convez.”

Problem* 56 (Renorming of superreflexive Banach spaces). Let X = (X, ||-|/x) be
a superreflexive Banach space. Let G be a group, and p: G — GL(X) is a uniformly
bounded linear representation of G on X.

We will prove that X admits an equivalent renorming || - ||yeus Such that
e p is isometric in || - [|ucus-
o (X, | [Jucus) is uniformly convex and uniformly smooth.

Here a Banach space Y is uniformly smooth if and only if its dual Y* is uniformly
convex.

Let A (X) be the set of all norms on X that are equivalent to || - || x. Equip M(X)
with the metric defined by

€11
d([l - |I,1[-II') = sup log

cexvoy | €]

(It is not difficult to see that this d is a genuine metric on (X)), and that (N (X), d)
is complete.)

(1) Set a subset Ny (X)? € N(X) as the set of all norms || - || in Nx such that

(X, |l - ||) is uniformly convex and that p is isometric in || - ||.
Show that My (X)? is non-empty.

(Hint. Recall Enflo’s characterization of the supereflexivity.)

(2) Show that My (X)” is in fact a dense subset of N'(X)?. Here N (X)? is the set
of all norms in A (X) with respect to which p is isometric.
(Hint. To each norm in N(X)?, deform || - || in Ny(X)? and make it close to

that.)
(3) Set a subset NMy(X)? € N(X) as the set of all norms || - || in Nx such that
(X, || - |]) is uniformly smooth and that p is isometric in || - ||.

Show that Ny (X)? N Nys(X)? # 0.

Therefore, in the setting above, there exist a uniformly conver and uniformly
smooth Banach space Y that is isomorphic to X and a bijective linear operator
T: X — Y such that T and T! are continuous and the representation given by

o=TopoT™!
is 1sometric.

Problem 57 (Duality mapping between unit spheres). Let X be a uniformly smooth
Banach space. Then X* is uniformly convex.

(1) Prove the following: “For every unit vector & € X, there exists a unique norm
1 element ¢ in X* such that

(o6) =17
Here (-]-): X* x X — K is the duality coupling (K is the coefficient field).
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We write the unique element ¢ as £*, and the map
S(X)—= S(X*): £ &

is sometimes called the duality mapping. Here S(Y') means the unit sphere of a
Banach space Y.

(2) Let p: G — O(X) be an isometric linear representation on X of a group G.
Then show that for all £ € S(X) and for all g € G,

(p(9)€)* = p'(9)&"

Here p': G — O(X*) is the contragredient representation of p (recall the defi-
nition from Problem 18).

Problem 58 (Natural complement of invariant vectors in superreflexive Banach
spaces). Let X be a superreflexive Banach space. Let G be a group and p: G —
GL(X) be a uniformly bounded linear representation. By Problem 56, by taking
an equivalent norm if necessary, we may assume that X is uniformly convex and
uniformly smooth and that p: G — O(X) is isometric.

Under the assumption above, we will show that there exists a natural complement
X;(G) of Xr(©);

X = X*@ g X;/;(G)

as G-representations. Furthermore, the projection from X onto X*(%) has norm 1,
ie., for all £ € XP(&) and for all n € X;(G),

1EF<11E + 7l

Define X7, ;) to be the annihilator of (X*)P"(@) in X, that means,

Xl ={neX :(¢ln)=0 foralg¢e (X)),

(1) Show that X/ is p(G)-invariant, that means, for all n € X/ ;) and for all
9 € G, p(g)n € X} holds.
(2) Show that for all ¢ € S(X*(©)) and for all 5 € X

1€+l = 1.

From this, show that X~ n X ) = {0} and that Xr& g X is a closed
subspace of X.

(3) Show that X”% & X'

():X.

(Hint. Suppose that it is not the case, Then, apply the Hahn—Banach separation
theorem, and draw the contradiction.)

Problem? 59 (Kazhdan projection). We here treat finitely generated groups. Let
G be a finitely generated group, and S be a finite symmetric generating set. Let X
be a class of (complex) Banach spaces.

Recall that the complex group algebra C[G] is the ring of elements of the form f =
> s /99, where f, € Cand f, = 0 all but finite g € G, equipped with the convolution
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as the multiplication in the ring. Note that for each linear G-representation p: G —
B(X) on a Banach space X (not necessarily isometric), p induces the following
algebra homomorphism f > f,:

Gl>f= nggwfp ngp X).

Definition . Let || - [[xipert be the mazimal norm on C[G] for all unitary represen-
tations of G. That means, || fl|sibert 1= SUD(r 3) || fr|[B(30), Where (m,H) runs over
all unitary representations of GG. The Banach algebra Cyipers(G) is defined as the
completion of C[G] in the norm || - ||imert-

In this case, the Banach algebra Cyipert(G) is naturally equipped with the struc-
ture of a C*-algebra. In the standard literature, || - ||zimbers 1S written as || - ||max;
Chibert (G) 1s written as C*(G) or Cf . (G), and called the mazimal (or full) group
C*-algebra.

(1) Set

A= %Zu — s (1 - s) <: S| — Zs) e C[G].

seS seS

and

1 1
—1—-— A== clG
< 2|S|) 2 2|S|ZSe

Now assume that G has property (T). Show that then (a"),en is a Cauchy
sequence in C*(G)(= Cuiert(G)).
(2) Prove the following. “If G has property (T), then there exists an element p in
C*(G) that satisfies the following three conditions:
(i) p is an idempotent, i.e. p* = p.
(i) p is the norm limit of elements of the form f, = 3, fnq9 € C[G] such
that 3, frg =1, fug >0, and fo -1 = fug
(i1i) For every (unitary G-representation) (w,H), p. (defined as the (norm)-
limit of (fnx)n>1) is a projection onto H™().

Such p is called a Kazhdan-type projection.
(3) Prove the converse. More precisely, show that if a finitely generated group G
admits a Kazhdan-type projection in C*(G), then G has property (T).

Remark. For a general X', we can define the Banach algebra C'y (G) as the completion
of C[G] in the maximal norm for all linear isometric representation (p, X), X € X
of G. A Kazhdan-type projection in Cx(G) is defined in the same way, except that
n (i), (7, H) is replaced with (p, X) above. We say that G has property (T%%) if
Cx(G) admits a Kazhdan-type projection.

Further strengthening have been defined and studied by several mathematicians,
as follows.
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e (V.Lafforgue) Strong property (Ty) for G is “roughly” defined as the ex-
istence of a Kazhdan-type projection in the Banach algebra Cy ¢ p(G) for
some C' > 0 and all D > 1. Here Cx ¢ p(G) is defined as the completion of
C|G] in the maximal norm for all linear representations (p, X), X € X of G
that satisfy

forall g € G, |p(g)|lsx) < DeClls |

where | - | is the word length on G with respect to S.

e (Oppenheim) Robust property (Txy) for G is defined as the existence of a
Kazhdan-type projection in the Banach algebra Cy p(G) for some D > 1.
Here Cx p(G) is defined as the completion of C[G] in the maximal norm for
all linear representations (p, X'), X € & of G that satisfy max,cg ||p(s)|lpx) <
D.

Problem 60. Let G be a finitely generated group and X be a (non-empty) class
of Banach spaces. Show that if G has property (Tg;oj), then G has property (Ty)
in the uniform way, that means, for every (equivalently, some) finite symmnetric
generating set S of G,

Kx(G,S) > 0.
Here Ky (G, S) is defined in Problem 31.

(In the literature, the last property is called “uniform property (Txy).”)

Problem 61. Prove that if a countable discrete group G has property (Tzroj), then
G is finite.
Therefore, the converse to Problem 60 is false in general.

(Remark. Drutu and Nowak (arXiv:1501.03473) showed that the converse of Prob-
lem 60 holds true if X consists of superreflexive Banach spaces.)

6. MAIN BYPRODUCTS OF MAIN THEOREMS

Problem 62. Let R be a unital, finitely generated (associative) ring, and n > 3.
By following the lecture, set G = E(n, R) and

o M=(ef,:i€n—1],reR)(= (R +)),

o L=(e,;:j€[n—1],r € R)(~ (R 4)).
Show that (M, L) = G.

Problem 63 (Cartan-type involution). Denote by R = Z(xy,...,zx) (k € N) the
non-commutative polynomial ring over Z. Define a map 7: R — R by setting
7(1) = 1 and 7(x;) = z; for i € [k], and by extending it in multiplication-reversing
way: T(rir2) = 7(r2)7(r1) for ri,re € R. In this way, 7 gives rise to an orientation-
reversing ring isomorphism.

Show that for every n € N>,, the following map

E(n,R) = E(n,R);  (ri;)ij — (17(rj4))ij

is a group isomorphism.
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7. METRIC ULTRAPRODUCTS

Problem 64. Show that every free ultrafilter (also known as, non-principal ultra-
filter) on N contains the cofinite filter on N.

Problem* 65. Let U be an ultrafilter on N. Prove that for every bounded sequence
(@n)nen in R, limy, a,, exists and that it is unique.

Problem* 66. Let U be a free ultrafilter on N. For each k € N let (a%k))neN be a
bounded sequence in R. Prove the following. Here U/-limits are taken for n.

(1) If lim,, 00 oy exists, then limy, ald = lim,, o0 al.

(2) For each k and for every t¢y,...,t; € R,

k k
i a® | = im a®
er{n (Z tia,, ) Z(tl er{n a,’).

(3) For each k,

lim sup a'¥ = sup lima®.

U 1<i<k 1<i<k U
Similarly on inf.

(Hint: For sup, the real problem is to show “<”.)

Problem 67. Construct a counterezample to (3) in Problem 66 when k = oo.
(Construct one that satisfies sup,, . |a$zk)| < 00.)

Problem 68. Let X = (5- €D, -, {2,. Show that then a metric ultrapower limy (X, 0)
of X is not reflexive. -

Problem* 69. Show that for a Banach space X, a metric ultrapower limy, (X, 0) of
X is strictly convex if and only if X is uniformly convex.

Problem* 70. Show that the class Hilbert of all (real or complex: we fix one)
Hilbert spaces is closed under taking metric ultraproducts, i.e., for every (H,)nen
with H,, € Hilbert, there exists a free ultrafilter & on N such that

lizﬁn(?—ln, 0) € Hilbert.
Problem 71. For two isomorphic Banach spaces X, Y, the Banach—Mazur distance
between X and Y is defined by
dgy (X, Y) = inf (|71 - [ 77])).
Here T runs over all isomorphisms X — Y and norms above are operator norms.
For fixed C' > 1, define [Hilbert|c as the class of all Banach spaces X such that
there exists H € Hilbert with dgy (X, H) < C.

Show that for every C, the class [Hilbert]c is closed under taking metric ultra-
products.

Problem* 72. Complete the proof of the following proposition in the lecture.
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Proposition . Let G be a finitely generated group, and let S be a finite symmetric
generating set of G. Let (a,: G ™~ Zy, zp)nen be a sequence of isometric actions on
metric spaces (Zyn)n and base points (z,)n (zn € Z, for all n). Assume that

() sup disp’ (2,) < oc.

Then, the following formula
au(9) - [(wn)n] = [(n(g) - wn)nl.  (Wn)n € loo-TL(Zn, 20)

gives a well-defined isometric action of G on limy(Z,, z,).

(1) Prove that for all (w,), € lo-11(Z,,2,) and for all s € S, (an(s) - w,), €
oo~ 11(Z,, 21).

(2) Prove that for all (w,), € lo-11(Z,,2,) and for all g € G, (a,(9) - wn)n €
oo~ 11(Z,, 21)-

(3) Prove that [(a,(g) - wy,),] is well-defined, namely, it does not depend on the
choice of representatives of [(wy,),]-

(4) Show that ay, is an isometric action.

Problem* 73 (Warning on strong continuity). We will give a counterexample to
the strong continuity of ultraproduct actions of strongly continuous actions.

Set H = La(R). Define ((m,,H)), to be the sequence of unitary representations
(so, with base points being 0) as follows: For every n € N,

(Wn(g)§>($) = g(ZE - ng) g€ Ra YIS R? 5 S LQ(R)

Consider an ultraproduct representation m, = limy(m,,0) on $ = limy(H,0).
Let n = xj0,1) € H, and set m; = [(n)n] € H. For each g € R, compute |7y (g9)nu —
Mulls, and show that m,: R — U($) is not strongly continuous.

Problem? 74 (Asymptotic cones and Paulin’s theorem). Recall from the literature
the definitions of Gromov hyperbolic spaces and Gromov hyperbolic groups.

(1) Let Z be a geodesic Gromov-hyperbolic space. Show that there exists a constant
0" such that the following holds true: For all z,y, z,w € Z,

d(z,w) + d(y, z) < max{d(x,y) + d(z,w),d(z, z) + d(y,w)} + ¢

(2) Let G be an (infinite) Gromov hyperbolic group, S be a finite symmetric gen-
erating set of G and I' = Cay(G, S) with the graph metric dr. Then show that
for every sequence (t,)neny with ¢, > 0 and lim,, . t, = oo and for every (z,),
with z,, € G, the metric ultraproduct with re-scaling

1
li —
1Z/I{I1(P, t dF7 .an)
is an R-tree, that is, O-hyperbolic geodesic metric space.
(3) Prove the following theorem.

Theorem . Assume that an (infinite) hyperbolic group G has property (T).
Then, Out(G) = Aut(G)/Inn(G) is a finite group.
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Note that the following generalization of Watatani’s theorem is known: “Groups
with property (T) has the fized point property with respect to isometric actions
on R-trees.”

8. THE UPSHOT

Problem* 75. Let G be a group and X be a Banach space. Let H < G be a
subgroup. Let a: G ~ X be an affine isometric action of G on X. Show that if
51752 € on(H)7 then

S1—& € Xp(H)7

where p is the linear part of «.

9. THE STATEMENT OF MAIN THEOREMS

Problem* 76. Let R be a unital (associative) ring and n > 3. Let G = St(n, R) be
the Steinberg group (recall the definition from the lecture). Let m = (1n) € Sym(n)
be the transposition between 1 and n in [n]. Show that the map

¢7T: Ezr,] = E;(i),w(j)v v 3&] € [n], reR

gives rise to an element in Aut(G).

10. METRIC ULTRAPRODUCTS AND FINDING REALIZERS

Problem* 77. Let G be a finitely generated group and S be a finite symmetric
generating set of G. Let Z be a (non-empty) class of metric spaces closed under
taking metric ultraproducts. Set C;S’l)'umform be the class of all (S, 1)-uniform actions
by isometries on Z € Z, i.e.,

C(Zs’l)_uniform ={a:GNZ:Z€2Z, erelg disp? (w) > 1}.

Show that then the class ng’l)'uniform is closed under taking metric ultraproducts,
that means, for every sequence ((an: G ™~ Zy, 2,))neny With (¢) as in Problem 72,
there exists a free ultrafilter on N such that

au(: liZ/I{Il(Oén, an Zn)) c Cé’S,l)—uniform.
Here we forget information of the base point from .
Problem* 78 (Gromov—Schoen argument). We will show the following proposition.

Proposition . Let G be a finitely generated group and S be a finite symmetric
generating set of G. Let Z be a (non-empty) class of metric spaces closed under
taking metric ultraproducts. Assume besides that Z is closed under zooming-in.
That means, for every (Z,d) € Z and for every t > 1, (Z,td) € Z holds. Assume
also that all Z € Z is complete.

Assume that G fails to have property (Fz). Then,

C(ZS,l)-umform 7& @



22 MASATO MIMURA

We proceed to the proof. By assumption of the failure of property (Fz), there
exist (Z,d) € Z and an isometric action a: G ~ Z such that Z(@) = .
(1) Prove the conclusion if inf.cz disp?(z) > 0.
(2) Let n € Ns;. Show the following: There exists z = z, € Z such that the
following holds true. “For all w € Z with d(z,w) < ndisp3(z), disp3(w) >
%dispi(z) holds.”

(Hint: Draw a contradiction by supposing that there does not exist such z.)
(3) By (1), we may assume that inf,c dispS (z) = 0. Then for each n € Nx1, show
that there exists z = z, € Z in (2) that satisfies the additional condition

disp?(z,) < 1.

(Hint. Modify the argument in (2).)
(4) Construct an (S, 1)-uniform action from (3).

Problem* 79. Let G be a finitely generated group and S be a finite symmetric
generating set of G. Let a: G ™~ Z be an isometric action of G on a metric space
Z that is (.S, 1)-uniform.

Show that for every v € GG, the following new action

G~z o™ (g) = alygy )

is again (.9, 1)-uniform.
11. FURTHER DIRECTIONS

Problem* 80. Let GG be a topological group and X be a Banach space. Recall that
an affine isometric action a: G ~ X 1is said to be continuous if for all £ € X, the
orbit map of &,
G—X; grralg)-€
is continuous. This is equivalent to saying that p: G — O(X) is strongly continuous
and that b: G — X is continuous. (Show this if you are interested in the proof.)
Here p is the linear part of o and b is the cocycle part.
Recall the following definition from the lecture:

Definition (Displacement gap). Assume that the action a: G ~ X above is
continuous. Then, « is said to have a displacement gap if there exist € > 0, C' > 0
and a compact subset K of GG such that for all £ € X,

dispf(ﬁ) = GHEHX/XP(G) -C

holds true. Here & +— ¢ means the natural projection from X onto X/X?(),

Show that in the setting of the definition above, a has a displacement gap if and
only if p (regarded as an action p: G ~ X) has a displacement gap with the constant
C' for p being 0.
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Problem? 81. Find new families of groups G in different nature to E(n, R) or
St(n, R) (or other groups associated to root systems) such that we can win (Game)
(or its relatives) for (G, My, ..., My) with “good” My, ..., M} for some k.

Try to show fixed point properties for G by employing these structures.



