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0 Introduction
My thesis is devoted to the σ − ideals of strongly measure sets, strongly meager
sets and star operation. The study of those notions has quite a long tradition in-
volving many mathematicians connected to Wrocław (e.g. Mycielski, Pawlikowski,
Sabok, Seredyński and Solecki). We present several basic and well known results
concerning those notions. Also, we show certain new result which is a rather direct
generalization of a theorem proved in a recent paper of Horbaczewska and Lindner
[11]. It partially answers a question asked by Seredyński in [4]

In Section 1 we introduce the basic notions used in the thesis, in particular we
define cardinal coefficients: additivity, covering and cofinality of an ideal. Section
2 is devoted to Martin’s Axiom, the well-known axiom which implies that the
coefficients mentioned above are of cardinality c (this assumption will be needed
in the last section). In Section 3 we define the families of strong measure zero and
strongly meager sets, we briefly overview its history and we prove some classical
results:

• the family of strong measure zero sets is a σ-ideal (3.1.2),

• all countable sets are strong measure zero and strongly meager (3.1.5, 3.2.3),

• there is a null set which is not strong measure zero and a meager set which
is not strongly meager (3.1.4, 3.2.2),

• assuming Continuum Hypothesis, we prove that there is an uncountable
strong measure zero set (Luzin set) and we mention the example of an un-
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countable strongly meager set (Sierpiński set).

In Section 4 we prove some basic facts on the star operation. Finally we prove that
cov(M) = c (and so, Martin’s Axiom) implies M = M∗∗ and that cov(N ) = c
(and so, Martin’s Axiom) implies that N = N ∗∗. The proof is based on the proof
of Horbaczewska and Lindner from [11] when they prove it under Continuum
Hypothesis.

We finish the thesis with a natural open problem. We were not able to solve it.

1 Preliminaries
Definition 1.1. We say that a subset B ⊆ X of a topological space Xis nowhere
dense if its closure has empty interior.

Equivalently B is nowhere dense in X if for each open set U ⊆ X, the set B∩U
is not dense in U .

Definition 1.2. A subset A ⊆ X of a topological space X is called meager if it
is a countable union of nowhere dense subsets of X.

Definition 1.3. We say that a subset I ⊆ P (X) is a ideal if the following
properties are satisfied:

• ∅ ∈ I,

• When A ∈ I and B ⊆ X, then B ⊆ A =⇒ B ∈ I,

• If A,B ∈ I then A ∪B ∈ I.

Definition 1.4. We say that a subset I ⊆ P (X) is a σ-ideal if it is an ideal and
moreover

• If {An}n∈N ⊆ I then
⋃

n∈N An ∈ I.

Now we can introduce some σ-ideals of real line.

• σ-ideal of meager sets of real line we will denote by M.

• σ-ideal of Lebesgue measure zero sets of real line we will denote by N .

• σ-ideal of countable sets of real line we will denote by Count.

Definition 1.5. We define additivity of the ideal I ⊆ X as the smallest number
of sets from I whose union is not in I anymore. Formally,

add(I) = min{|A| : A ⊆ I ∧
⋃

A /∈ I}.
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Definition 1.6. We define covering of the ideal I ⊆ X as the smallest number
of sets from I whose union is all of X. Formally,

cov(I) = min{|A| : A ⊆ I ∧
⋃

A = X}.

Definition 1.7. We define the cofinality of the ideal I as the least cardinality
of such a subfamily of I that every element of I can be bounded from above by
an element of that subfamily. Formally,

cof(I) = min{|B| : B ⊆ I ∧ (∀A ∈ I)(∃B ∈ B)(A ⊆ B)}.

It is obvious that add(M) ⩽ c, add(N ) ⩽ c, cov(M) ⩽ c and cov(N ) ⩽ c.

Definition 1.8. We say that a subset of a topological space is an Gδ set if it is a
countable intersection of open sets.

Definition 1.9. We say that a subset of a topological space is an Fσ set if it is a
countable union of closed sets.

Proposition 1.10. cof(M) ⩽ c

Proof. Since we know that every meager set we can cover with Fσ set which is
meager we get cof(M) ⩽ c.

Proposition 1.11. cof(N ) ⩽ c

Proof. Since we know that every measure zero set we can cover with Gδ set which
has measure zero we get cof(N ) ⩽ c.

2 Martin’s Axiom
In this section we will introduce Martin’s Axiom, the standard axiom which makes
the coefficients defined above big.

We will start with the Rasiowa-Sikorski Lemma. Later we can generalise it to
Martin’s Axiom. We have to start with some definitions.
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Definition 2.1. We say that a subset D in a poset P is dense if

(∀x ∈ P)(∃q ∈ D)(q ⩽ x).

Definition 2.2. W say that F ⊆ P is a filter, if the following conditions hold:

• F ̸= ∅,

• (p ∈ F ∧ p′ ⩾ p) =⇒ p′ ∈ F ,

• (p, q ∈ F) =⇒ (∃r ⩽ p, q) r ∈ F .

Definition 2.3. We say that a filter G is D-generic if for a dense D ⊆ P it holds
that G ∩ D ̸= ∅.

Lemma 2.4 (Rasiowa-Sikorski). Let P be a partial order and D a countable family
of dense subsets of P. Then there exists a D-generic filter in P.

Proof. Enumerate D = {D0, D1, ...}. We take any d0 ∈ D0. The, using the fact
that D1 is dense, we take d1 ∈ D1 such that d1 ⩽ d0. We continue in the same
way receiving a decreasing sequence of elements, each of them is from the next set
from family. From this sequence we obtain a filter G = {p : ∃n, p ⩾ dn}.

Now we will need another definitions to upgrade the Rasiowa-Sikorski Lemma.

Definition 2.5. We say that elements p, q ∈ A are incompatible if there don’t
exists r ∈ A such that r ⩽ p and r ⩽ q.

Definition 2.6. A set A ⊆ P is an antichain in P if every two different elements
p, q ∈ A are incompatible.

Definition 2.7. We say that a partial order P satisfies ccc if all the antichains
are countable.

Now we can define Martin’s Axiom.

Definition 2.8. Let κ be a cardinal number. By MA(κ) we denote the following
axiom: Let P be a partial order that satisfies the ccc and let D be a family of
dense subsets of P with |D| ⩽ κ. Then there exists a D − generic on P .

Definition 2.9. Martin’s Axiom says that MA(κ) holds for every κ < 2ℵ0 .

Note that MA(ℵ0) is equivalent to Rasiowa-Sikorski Lemma.

Theorem 2.10. Continuum Hypothesis implies Martin’s Axiom.
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Proof. Since the Continuum Hypothesis holds we know that 2ℵ0 = ℵ1. So the
only MA(κ) required for MA to be true is MA(ℵ0). It’s obvious from previous
remark.

Theorem 2.11. Assume Martin’s Axiom. add(N ) = c

Proof. The proof follows the proof in [2].

Let {Ei : i ∈ I} be the ⩽ κ sets of measure 0, and let E =
⋃
Ei. Let ε > 0. We

must find an open set including E which has measure < ε.

Let P be the collection of all open sets of measure < ε, and p ⩽ q mean p ⊆ q.
We have to show that the poset P satisfies ccc. Let Q be pairwise incompatible
subset of P . Let Qn = {p ∈ Q : µ(p) ⩽ (1 − 2−n) · ε}. Now we show that Qn is
countable for each n which is enough to have ccc.

For each p ∈ Qn, choose p̄ ⊆ p, so that p̄ is a finite union of open intervals with
rational endpoint and µ(p − p̄) < 2−n · ε. Since there are only countable many
such finite unions, we have only to show that if p and q are distinct members of
Qn, then p̄ ̸= q̄.

Suppose p̄ = q̄. Then p ∪ q ⊆ (p− p̄) ∪ q, so µ(p ∪ q) < 2−n · ε+ (1− 2−n) · ε = ε.
Then we have that p and q are compatible, contradicting p, q ∈ Q.

For i ∈ I, let DI = {p ∈ P : Ei ⊆ p}. Using µ(Ei) = 0, we see that Di is dense in
P . From Martin’s Axiom we know that there is D − generic which meets every
Di.

Let G be the union of the members of Q. Then G is open. From Di ∩ Q ̸= ∅ we
find that Ei ⊆ G, so E ⊆ G.

Assume that µ(G) > ε. G is a countable union of sets in Q. It follows that there
is finite union G1 of sets in Q such that ε ⩽ µ(G1). Since Q is D-generic, some
member of Q includes G1 and hence has measure ε ⩽. This is a contradiction,
because elements of Q has measure < ε.

3 Strong measure zero sets and strongly meager
sets

In this section we will define the notion of strongly measure zero sets (coined by
Borel in 1919) and a much younger notion of strongly meager sets.
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3.1 Strongly measure zero sets

Definition 3.1.1. A set A ⊆ R has strong measure zero when for every se-
quence (εn) of positive reals there exists a sequence (In) of intervals, such that
|In| ⩽ εn and A is contained in the union of the In.

• σ-ideal of strong measure zero sets of real line we will denote as SMZ.

Proposition 3.1.2. SMZ is σ − ideal of real line.

Proof. It’s clear that ∅ ∈ SMZ and that a subset of strong measure zero set
has strong measure zero. So we have to show that if {Xn}n∈N ⊆ SMZ then⋃

n∈NXn ∈ SMZ.

Let {Xn : n ∈ ω} be a family of strong measure zero sets. We will show that⋃
n∈ω Xn is a strong measure zero set. Given ⟨εn : n ∈ ω let {An : n ∈ ω} be

any family of pairwise disjoint, infinite subsets of ω. For each m ∈ ω there exists
{xm

n : n ∈ ω} such that Xm ⊆
⋃

n∈An
(xm

n − εn, x
m
n + εn). Now we have

X ⊆
⋃
m∈ω

⋃
n∈An

(xm
n − εn, x

m
n + εn)

First, we will prove an obvious fact that SMZ is contained in N .

Proposition 3.1.3. SMZ ⊆ N

Proof. Take ε > 0 and εn = ε
2n+1 So there exists a collection of intervals In such

that A ⊆
⋃

In, so λ(A) ⩽
∑

ε
2n+1 = ε.

The ideal of strongly measure zero sets is however much smaller than N .

Proposition 3.1.4. There exists a measure zero set which does not have strong
measure zero, so N ̸= SMZ

Proof. Cantor set is an example of a set of measure zero that don’t have strong
measure zero.

Suppose that I1.I2, ... are open intervals in R such that In has length 3−n

Note that I1 must be disjoint from [0, 1
3
] or [2

3
, 1]. Label the interval disjoint from

I1 by A1
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Now I2 must be disjoint from one of two closed intervals obtained from deleting
the open middle third of A1, Label that one A2.

We continue like this. For each n the interval In+1 from one of the closed intervals
obtained from deleting the middle third of An, and we label one of this An+1

We have a decreasing sequence A1 ⊇ A2 ⊇ ... of nonempty compact subsets of R,
and so their intersection must be nonempty. Any point of this intersection must
belong to Cantor set and it’s not in

⋃
i=1 In so the sequence of open intervals we

began with can’t cover the Cantor set.

The ideal SMZ contains all the countable subsets of the real line.

Proposition 3.1.5. Count ⊆ SMZ

Proof. We know that every countable set is countable union of singletons.
Every singleton we can cover with an interval |I| ⩽ ε for all ε > 0. So we can
cover a countable set with a sequence of intervals (In), such that |In| ⩽ εn for all
εn > 0.

It is not clear if it contains anything more than countable sets. The Borel Conjec-
ture says that

SMZ = Count.

It was known that consistently one can create uncountable sets which are strongly
measure zero. We will present now the simplest example of this sort.

Definition 3.1.6. A subset L of R is called a Luzin set if L is uncountable, but
for every nowhere dense subset K of R the intersection K ∩ L is countable.

Proposition 3.1.7. Every Luzin set has strong measure zero.

Proof. Proof follows as in [7]

Let X be a Luzin set. Take a sequence of positive reals ⟨εn : n ∈ ω⟩, and let
⟨qn : n ∈ ω be an enumeration of all rationals.

Since
⋃

n∈ω(qn − ε2n, qn − ε2n) is a comeager set, it follows that

X\
⋃

(qn − ε2n, qn − ε2n)

is a countable set, name it {xn : n ∈ ω}. Then

X ⊆
⋃

(qn − ε2n, qn − ε2n) ∪
⋃

(xn − ε2n+1, xn − ε2n+1)
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Theorem 3.1.8. Continuum Hypothesis implies existence of Luzin set.

Proof. Proof follows as in [6].

We can define Luzin set as an uncountable set of reals that has countable intersec-
tion with every closed nowhere dense set of reals. We know that there are exactly
2ℵ0 nowhere dense closed subsets of R. Assume CH holds, and let ⟨Kξ : ξ < ω1⟩
be an enumeration of all closed nowhere dense subset of R.

Construct L = {xη : η < ω1} in such way that xη ∈ R\(
⋃

ξ<η Kξ ∪ {xξ : ξ < η})
for all η < ω1. This is possible since the real line is not a union of countably many
nowhere dense subsets. Clearly, L is uncountable. If K is a nowhere dense subset
of R, then cl(K) = Kξ for some ξ < ω1, and L∩K ⊆ {xη : η ⩽ ξ}. It follows that
L is Luzin set.

Proposition 3.1.9. Continuum Hypothesis implies existence of uncountable strong
measure zero set and so it implies the failure of Borel Conjecture.

Proof. We know that Continuum Hypothesis implies existence of Luzin set and
we know that every Luzin set has strong measure zero. So we have uncountable
strong measure zero set.

However, for many years it was open if Borel Conjecture is consistent with the
usual axioms of set theory. It was solved by Laver in [3]

One of the most astonishing theorems in the theory of strongly measure sets is the
following, due to Galvin, Mycielski and Solovay (see [1]).

Theorem 3.1.10. A set X ⊆ R is strongly measure zero if and only if for every
meager set H it holds that X +H ̸= R.

This theorem motivates the notion of strongly meager sets which we examine in
the next section.

3.2 Strongly meager sets.

Definition 3.2.1. A set X ⊆ R is strongly meager if for every measure zero set
H it holds that X +H ̸= R.
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We will denote the family of strongly meager sets of real line by SM.

An example of a set that it is not strongly meager is [0, 1].

Proposition 3.2.2. M ⊈ SM

Proof. An example of a set that has measure zero but is not in SM is the Cantor
set, but copied in every interval [n, n+ 1] for any n ∈ Z.

To show the above, it is enough to show that C+C = [0, 2], where C is the Cantor
set.

We know that the Cantor set is the set of all numbers between 0 and 1 that can
be written in base 3 using only the digits 0 and 2. So we have to show that we can
get any number between 0 and 2 as a sum of two numbers that written in base 3
have only the digits 0 and 2.

Let c be any number from [0, 2]. We want to have c = a+b, where a ∈ C and b ∈ C.
By ai we denote the digit on the i-th place in the ternary (base 3) expansion on the
number a. Same for b and c. We can get our a and b according to the algorithm
below.

1. If the only digits occurring in ci are 0 or 2, then let a = 0 and b = c.

2. When we have first 1 in our cycle in place number i as ai we take 2 and as
bi we take 2. If ci+1 = 1 we take ai+1 = bi+1 = 0 and we go to step number
one and start our cycle again. If ci+1 = 0 we take ai+1 = 0 and bi+1 = 2, if
ci+2 = 2 we take ai+2 = 2 and bi+2 = 2. We do this steps as long as ci+n ̸= 1.
When ci+n = 1 we take ai+n = 0 and bi+n = 0 and go to step 1.

We see that with this algorithm we can get every number from [0, 2].

Notice that the above proof would work also to show that there is a null set which
is not strongly measure zero (if we use Galvin-Mycielski-Solovay theorem).

Proposition 3.2.3. Count ⊆ SM

Proof. We have to show that C+H ̸= R for all H ∈ N and C ∈ Count. We know
that N is translation invariant so if we take any r ∈ R we have

(∀H ∈ N )(H + r ̸= R)

Since N is σ − ideal we can "move" our set by countable many singletons.
So we have Count ⊆ SM.
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Definition 3.2.4. A subset S of R is called a Sierpiński set if S is uncountable,
but for every N ⊆ R of Lebesgue measure zero the intersection N ∩S is countable.

In [5] Pawlikowski showed that every Sierpiński set is strongly meager, answering
a famous open problem of Galvin.

Theorem 3.2.5. Continuum Hypothesis implies existence of Sierpiński set.

Proof. Take a collection of 2ℵ0 measure zero sets of R such that every measure
zero set is contained in one of them. Assume CH holds and let ⟨Nξ : ξ < ω1⟩ be
an enumeration of our collection.

Construct S = {xη : η < ω1} such that xη ∈ R\(
⋃

ξ<η Nξ ∪ {xξ : ξ < η}) for
all η < ω1. This is possible since the real line is not a union of countably many
measure zero sets. Clearly, S is uncountable and S ∩ N is countable. It follows
that S is Sierpiński set.

The dual Borel Conjecture says that

SM = Count.

Proposition 3.2.6. Continuum Hypothesis implies existence of uncountable strongly
meager set and consequently it implies the failure of dual Borel conjecture.

Proof. We know that Continuum Hypothesis implies existence of Sierpiński set
and we know that every Sierpiński set is strongly meager. So we have uncountable
strongly meager set.

For many years the problem if Borel Conjecture and Dual Borel Conjecture holds
simultaneously was open. It was solved by Goldstern, Kellner, Shelah and Wohof-
sky in [10].

4 * operation
The Galvin-Mycielski-Solovay theorem and the notion of strongly meager sets mo-
tivate the following abstract notion.

Let (X,+) be an abelian group. For A,B ⊆ X we write

A+B = {a+ b : a ∈ A, b ∈ B}.
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Definition 4.1. For a family F ⊆ P(X) let:

F∗ = {A ⊆ X : ∀F∈FA+ F ̸= X}.

We write F∗∗ = (F∗)∗ and F∗(n+1) = (F∗(n))∗

In this sense the Galvin-Mycielski-Solovay says that SMZ = M∗ and the sets of
strongly meager sets can be defined as SM = N ∗.

Now, before we reach the main results of the thesis, we prove several simple general
facts about the star operation.

4.1 General remarks on *.

Proposition 4.1.1. G ⊆ F∗ ⇐⇒ F ⊆ G∗

Proof. (=⇒) Assume we have G ⊆ F∗ From definition F∗ = {A ⊆ X : ∀F∈FA +
F ̸= X}. Since G is subset of F∗ we have that G ⊆

⋃
A. We know that

∀A∈F∗∀F∈FA+ F ̸= X, so since G ⊆
⋃

A we have F ⊆ G∗

(⇐=) The converse follows analogically.

Proposition 4.1.2. F ⊆ F∗∗

Proof. By the definition F∗∗ = {A ⊆ X : ∀F∈F∗A+ F ̸= X}. So we have to show
that ∀F∈F∀A∈F∗A+F ̸= X. From definition F∗ we know that in F∗ are only sets
A such that A+ F ̸= X what we had to show.

Proposition 4.1.3. G ⊆ F =⇒ F∗ ⊆ G∗

Proof. Assume G ⊆ F . From definition F∗ = {A ⊆ X : ∀F∈FA + F ̸= X}. Since
G ⊆ F if A ∈ F∗ and A+F ̸= X for F ∈ F then we know that A ∈ F∗, A+G ̸= X
for G ∈ G.

Proposition 4.1.4. F∗ is closed under taking subsets and translation invariant

Proof. Take A ∈ F∗. We know that ∀F∈FA + F ̸= X. But taking any subset
B ⊆ A we have ∀F∈FB + F ̸= X, so F∗ is closed under taking subsets.

Take A ∈ F∗. We know that ∀F∈FA + F ̸= X. So there exists a ∈ X such that
a /∈ A+F for all F ∈ F . Taking a translation A+x we get an element a+x such
that a+ x /∈ (A+ x) + F for all F ∈ F . So F∗ is translation invariant.
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Proposition 4.1.5. F∗(n+2) = F∗(n) for 1 ⩽ n

Proof. From 4.1.2 and 4.1.3 we have that F∗∗∗ ⊆ F∗ and F∗∗ ⊆ F∗∗∗∗. So we
know that F∗(2n+1) ⊆ F∗(2n−1) and F∗(2n) ⊆ F∗(2n+2). Now he have the reverse
inclusion. First we have to proof that F∗ ⊆ F∗∗∗

From definition F∗∗∗ = {A ⊆ X : ∀F∈F∗∗A + F ̸= X}. So we have to show that
∀F∈F∗∀A∈F∗∗A + F ̸= X. From definition F∗∗ we know that in F∗∗ are only sets
A such that A+ F ̸= X what we had to show.

From 4.1.3 we have F∗∗∗∗ ⊆ F∗∗ and F∗∗∗ ⊆ F∗∗∗∗∗. So F∗(2n−1) ⊆ F∗(2n+1) and
F∗(2n+2) ⊆ F∗(2n).

Proposition 4.1.6. If I ⊆ P(R) is translation invariant σ− ideal, then Count ⊆
I∗

Proof. Since I ⊆ R is translation invariant we know that (∀I ∈ I)(I + r ∈ I).
In I∗ are all singletons, because (∀I ∈ I)(I + r ̸= R).

But since I is a σ-ideal we know that we can "move" our sets by countable many
singletons. So in I∗ are all countable sets.

Theorem 4.1.7. Count∗ is the union of all proper, translation invariant σ-ideals
of subsets of X

Proof. Let J be a proper, translation invariant σ − ideal of subsets of X and let
I ∈ J . The existence of a countable set C = {c1, c2, ...} such that I + C = X is
impossible since I + C =

⋃
k∈N(I + ck) ∈ J , so I ∈ Count∗.

For any A ∈ Count∗, the family of sets JA = {P ⊆ X : ∃(C ∈ Count)(P ⊆ A+C)}
is a translation invariant proper σ-ideal containing set A

Proposition 4.1.8. As a consequence of previous theorem we have

M ≠ Count∗,

N ̸= Count∗.

Proposition 4.1.9. N ⊆ Count∗
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Proof. We know from 4.1.6 that Count ⊆ N ∗. Using Theorem 4.1.1 we have
N ⊆ Count∗

Proposition 4.1.10. M ⊆ Count∗

Proof. We know from 4.1.6 that Count ⊆ M∗. Using Theorem 4.1.1 we have
M ⊆ Count∗

Proposition 4.1.11. Count∗ is not an ideal.

Proof. We know that M ⊆ Count∗ and N ⊆ Count∗. But there exists A ∈ N
such that R\A ∈ M

4.2 Horbaczewska-Lindner results.

In [4] Seredyń ski posed several questions about * operation. For example he
asked for which ideals I we have I = I∗∗. It turned out to be surprisingly difficult
questions. The problem of the ideal of countable sets was solved by Solecki in [8]
and then, by much easier methods, by Pawlikowski and Sabok in [9].

In 2018 Horbaczewska and Lindner published a paper [11] in which they presented
a consisent answer for the ideals M and N . Namely, they showed that under
Continuum Hypothesis M = M∗∗ and N = N ∗∗.

We will show that this result can be easily generalised.

The main ingredient of Horbaczewska and Lindner result is the following lemma.

Lemma 4.2.1. (Horbaczewska, Lindner) For any F ⊆ P(X) the following condi-
tions are equivalent:

• ∀A/∈F(F ∪ {A})∗ ̸= F∗

• F = F∗∗

Proof. (=⇒) Assume ∀A/∈F(F ∪ {A})∗ ̸= F∗. We have to show that F∗∗ ⊆ F . If
there exists A ∈ F∗∗\F , then F∪{A} ⊆ F∗∗. So we have F∗ = F∗∗∗ ⊆ (F∪{A})∗.
Obviously, (F ∪ {A})∗ ⊆ F∗. So we have contradiction.

(⇐=) Assume F = F∗∗. Let A /∈ F . Then F ∪ {A} ⊈ F . By the assumption we
have F ∪ {A} ⊈ F∗∗. Hence F∗ = F∗∗∗ ⊈ (F ∪ {A})∗.
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Theorem 4.2.2. If J ⊆ P(R) is a translation and reflection invariant proper
σ-ideal with cof(J ) ⩽ c, cov(J ) = c and A /∈ J , then

(J ∪ {A})∗ ̸= J

Proof. The proof repeats the proof in [11], but we don’t need CH, only cov(J ) = c.

Since cof(J ) ⩽ c there exists a family F ⊆ J of subsets of X with cardF = c
such that for every set I ∈ J there exists a set F ∈ F covering I (I ⊆ F ).

Let {zα}α<c be an enumeration of R and let {Fα}α<c be an enumeration of all sets
from F . We build inductively sequences of reals {xα}α<c and {rα}α<c. We start
with two different numbers x0 and r0. Let λ < c. Suppose that we have already
constructed {xα}α<λ and {rα}α<λ and we define xλ and rλ. Since

⋃
α1,α2<λ(Fα1 +

xα2) ̸= P(R) we can choose rλ /∈
⋃

α1,α2<λ(Fα1 + xα2).

Let Bλ = R\
⋃

α1,α2⩽λ(rα1 − Fα2). Then R\Bλ ∈ J . Obviously R\(zλ − Bλ) =

zλ − (R\Bλ) ∈ J . Since A /∈ J then A ⊈ R\(zλ − Bλ), so A ∩ (zλ − Bλ) ̸= 0.
Hence there are aλ ∈ A and bλ ∈ Bλ such that zλ − bλ = aλ. Let xλ = bλ. Using
this procedure for every λ < c we define X = {xα}α<c. Since A +X = R, the set
X does not belong to (J ∪ {A})∗. On the other hand, for α < c choosing λ > α
we have rλ /∈ X + Fα, so X ∈ J .

Theorem 4.2.3. If J ⊆ P(R) is a translation and reflection proper σ-ideal with
cof(J ) ⩽ c, cov(J ) = c and A /∈ J , then

J = J ∗∗

Proof. From previous theorem we know that if J ⊆ P(R) is a translation and
reflection proper σ-ideal with cof(J ) ⩽ c, cov(J ) = c and A /∈ J then
(J ∪ {A})∗ ̸= J . So from Theorem 4.2.1 we have J = J ∗∗.

From previous chapter we know that if we assume Martin’s Axiom cov(M) =
cov(N ) = cof(M) = cof(N ) = c.

Proposition 4.2.4. Assuming Martin’s Axiom we have:

M = M∗∗

N = N ∗∗
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Proof. We know that M and N are σ − ideals and assuming Martin’s Axiom we
have cof(M) = cof(N ) = c and cov(M) = cov(N ) = c. So M and N satisfies
assumptions of Theorem 4.2.3

Proposition 4.2.5. Assume Martin’s Axiom (or just cov(M) = c)

M = SMZ∗

Proof. Assuming Marin’s Axiom M satisfies assumptions of Theorem 4.2.3, so
M = M∗∗ and since M∗ = SMZ we have M = SMZ∗

Proposition 4.2.6. Assume Martin’s Axiom (or just cov(N ) = c)

N = SM∗

Proof. Assuming Marin’s Axiom N satisfies assumptions of Theorem 4.2.3, so
N = N ∗∗ and since N ∗ = SM we have N = SM∗

The natural question is if the assertions of the above theorem hold true without
assuming any additional axioms. The following results show that the answer is
negative.

Theorem 4.2.7. Borel Conjecture implies M ≠ M∗∗.

Proof. From Borel Conjecture we know that SMZ = Count, so we have M∗ =
Count. So M∗∗ = Count∗. With Proposition 4.1.8 we have M ̸= Count∗. So we
have M ≠ M∗∗.

Theorem 4.2.8. Dual Borel Conjecture implies N ̸= N ∗∗.

Proof. From dual Borel Conjecture we know that SM = Count, so we have N ∗ =
Count. So N ∗∗ = Count∗ .With Proposition 4.1.8 we have N ≠ Count∗. So we
have N ̸= N ∗∗.

So, there is a natural problem:

Problem 4.2.9. Is the statement M ̸= M∗∗ equivalent with the Borel Conjec-
ture? Is the statement N ̸= N ∗∗ equivalent with the dual Borel Conjecture?

We conjecture that the answers to the above problems are negative but we could
not find any other reason for M not being M∗∗ than Borel Conjecture (and simi-
larly for N and dual Borel Conjecture).
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