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1 Introduction

One of the most important aspects of the geometric group theory are groups acting
geometrically on the spaces of non-positive curvature, one of the most discussed types of
which are CAT(0) spaces. It turns out that for a CAT(0) space X there can be defined the
so called boundary at infinity 0X of a space X. Since the boundary at infinity depends
mostly on global properties of the given CAT(0) space, then a natural hypothesis can be
formulated: for every group I' acting geometrically on CAT(0) spaces X; and Xy, the
boundaries 0.X; and 0X5 are homeomorphic. It turns out, however, that this is not true;
the example of a group I' that acts on two spaces X; and X, with non-homeomorphic
boundaries was first given by C. B. Croke and B. Kleiner in [3]. Although the general
result is false, we can still obtain some information about the boundary 0X from the
group I that acts geometrically on X.

In this paper I will prove that a boundary of a CAT(0) space X on which a free product
of infinite groups I' = G *x H acts geometrically can be described in terms of limit sets
AG and AH of groups G and H. Formally, this result is stated in the following main
theorem:

Main theorem

Let I' = G %« H be a free product of infinite groups and suppose that I' acts geometrically
on a proper CAT(0) space X. Then X can be expressed in terms of AG and AH in the
following way:

0X = U(AG,AH),
where U denotes the operation of dense amalgam of compact metric spaces.

Section 2 contains basic definitions and lemmas that will be used throughout the paper
and are sufficiently well described in the literature. This section splits into four parts
describing CAT(0) spaces and their boundaries, geometric group actions, free products
of groups and dense amalgams. Most of the proofs in this chapter have been omitted
and replaced only by relevant literature references. Section 3 consists of definitions and
lemmas concerning limit sets that are also very important and used throughout this paper
but were only vaguely mentioned in available sources. Section 4 introduces the concept
of R-separation and proves important, technical lemmas that are the basis of reasoning
in the next two chapters. Section 5 consists of six general but technical lemmas that
are necessary for proving lemmas in the next section. Section 6 is focused on describing
geodesic rays in 0,,X. In the first part of this section the notion of generating sequences
is described in such a way that it coincides with definition of prolongation given in Section
4 and definitions of limit sets from Section 3. In the second part of this section, several
lemmas describing geodesic rays and estimating distances between them are proven. Fi-
nally the main theorem is proven in Section 7. Section 8 is written in a slightly looser
language and describes open problems that were encountered during the writing of this
paper and presents some ideas about how the main theorem could be possibly generalised.

2 Preliminaries

In this section I will present the most important facts that will be used throughout this
paper. Those definitions and theorems are mostly well-known and were described in



detail in [2], [1], [5] and [6]. For several of the lemmas, I found it appropriate to present
their proofs, however in most cases I chose to refer the reader to the relevant sources.

2.1 CAT(0) spaces

Definition 2.1 (Geodesic metric space)

Let (X,d) be a metric space, let 1,29 € X and d(z1,22) = D. We will say that
v :[0,D] = X is a geodesic path between xy and xs if y(0) = xq, 7(D) = x5 and for all
t1,t2 € [0, D] we have d(y(t1),7(t2)) = |t1 — t2|]. We will say that the constant D is the
lenght of the geodesic path ~.

We will say that a metric space (X, d) is geodesic if for each pair of points x1, x5 there is
a geodesic path between x; and .

Definition 2.2 (Geodesic triangle)

Let (X, d) be a geodesic space. An object A consisting of three points A;, A2, A3 € X and
three geodesic segments (4, 4,], V[A1,43], V[A2,45] Detween A; and As, Ay and A3, A and A3
respectively is called a geodesic triangle.

Definition 2.3 (Comparison triangle)
Let (X,d) be a geodesic metric space and let A, Ay, A3 € X. Any triple of points
Aj, As, Az € R? is called a comparison triple for Ay, Ay, Ag if for any 4,5 € {1,2,3} the
equality holds

d(Ai, Aj) = de(A7, A7),
where d, is the euclidean metric on R?. Moreover we will denote the unique geodesic
between A7, A% in (R2,d,) as NiAz, A7) A geodesic triangle consisting of points A} and
geodesic segments 7[4x, A7) is called a comparison triangle for Ay, As, As.

Fact 2.4
For every triple of points Ay, Ay, A3 from geodesic space X there exists a comparison
triangle for Ay, As, Az, and it is unique up to congruence.

Definition 2.5

Let (X,d) be a geodesic space, A,B,C € X, and let v 5], Va,c), VB,c) be geodesic
paths between A and B, A and C, B and C respectively. We will say that a geodesic
triangle consisting of points A, B, C' and geodesics 74, 5], V4,0, VB,c) in X is thin if for
any comparison triangle consisting of points A* B*,C* € R? and geodesic segments
Nax,B*], Na=,c+], N+ c+ the following conditions holds:

Vseio,aca,8) Viep.da,c) A(Va,8(5), Yac)(t) < de(nas,54(s), nax.c (1)),

e(Ma= B+ (8), e (1)),
e(Mas.c+(8), np=c#(t)).

Vsepo.a(a,8) Viep,as,0) AVa,5(8), VB0 (t)) < d
Vselo,d4,0) Viep.as,0) AVac(s), vsco(t) <d
Definition 2.6 (CAT(0) space)

A space (X, d) is called a CAT(0) space if it is geodesic and if every geodesic triangle in
X is thin.

Definition 2.7 (Proper metric space)
We will say that a space (X, d) is proper if every closed ball in X is compact.



Fact 2.8
Every proper metric space is complete.

Definition 2.9
Let (X, d) be a CAT(0) space and let 7, and 7y, be geodesic paths of equal length D in a
CAT(0) space (X,d). Then we define the distance function f : [0, D] — [0,00) between
Y1, Y2 as follows:

f@t) = d(n(t),72(1))-

The following lemma is well-known and considered an important result about geometry
of CAT(0) spaces. A detailed proof can be found in [2| (Proposition I1.2.2).

Lemma 2.10
Let v and o be geodesic paths of equal length D in a CAT(0) space (X,d). Then the
distance function between 1 and 7 is conver.

Definition 2.11 (Geodesic ray)
Given a CAT(0) space (X, d), we say that a curve v : [0,00) — X is a geodesic ray if for
every s,t > 0 the following equality holds:

d(7(s),7(t)) = s — 1.

Moreover we will say that - starts at zq if v(0) = zq

Definition 2.12 (Asymptotic geodesic rays)
Two geodesic rays v; and 7, are asymptotic if there exists a constant K > 0 such that
for every t > 0 we have:

d(mi(t), (1) < K.
We denote asymptoticity of v, and v, by v1 ~ 7s.

Fact 2.13
The relation ~ on the set of geodesic rays in a CAT(0) space is an equivalence relation.

The following lemma is important for defining the boundary at infinity of a CAT(0) space.
For a proof see 2| (Proposition I1.8.2).

Lemma 2.14
Let (X, d) be a proper CAT(0) space. For every point xo € X and for every geodesic ray -y
there exist a unique geodesic ray ~' starting at xqo such that v ~ ~'.

Definition 2.15
Let (X, d) be a proper CAT(0) space. We will denote the set of all geodesic rays starting
at zop by 0, X.

Definition 2.16 (Boundary at infinity)
Let (X, d) be a proper CAT(0) space. The set 0X is defined as:
0X = {vy:vis a geodesic ray in X}/ ~ .

0X is sometimes called the boundary at infinity of X (or simply boundary of X).

Fact 2.17
There is a canonical bijection between 0,, X and 0X that maps elements of 0,,X to their
equivalence classes in 0X.



Definition 2.18 (Topology on the boundary)
There is a natural topology 7,, on 0,,X generated by the basis of open sets

Nyo(R,e,7) = {’7, € Oy X d(ly(R)”yl(R)) <e},

where R > 0, > 0 and v is a geodesic ray starting at xg.

We define a topology on X as the topology induced from 7,, by the canonical bijection
between 0,,X and 0X.

Fact 2.19
The topology on 0X does not depend on the choice of the base point x.

The following lemma is a particularly useful fact about boundaries at infinity. For more
details see [2] (Definition I1.8.6).

Lemma 2.20
For a proper CAT(0) space X, its boundary at infinity 0X is compact.

It turns out that boundaries of proper CAT(0) spaces are metrizable. This fact can be
most directly deduced from the following observation from [5] (Proposition 9.6).

Definition 2.21 (Osajda’s metric)
Let (X, d) be a proper CAT(0) space. For a positive constant A we define Osajda’s met-
ric da on 0., X as follows:

0iff vy =+
47, where M = inf {t € [0, 00) : d(y(t),7/(t)) > A} otherwise.

dA (77 /7/) = {

Lemma 2.22
da is a metric on 0,,X and it is compatible with the topology 7., on Oy, X.

2.2 Svarc-Milnor lemma
The concepts below are explained in more details in section 1.8 of [2].

Definition 2.23 (Geometric group action)
Let (X, d) be a proper geodesic space and let I" be a group that acts on X by isometries.
Then we say that the action of I' is

e properly discontinuous if for every compact set K C X theset {ge€T': KNg- K}
is finite;

e cocompact if there exist a compact set K C X such that Ugerg K =X.

We will say that action of I' is geometric if it is properly discontinuous and cocompact.
We will denote the fact that I" acts on X geometrically by I' ~ X.

Definition 2.24 (Word metric)

Let I' be any group and A its set of generators. Then we define the word metric associated
with A as a metric on I' given by the formula d4(g,¢’) = n, where n is the length of
g'g~! expressed as a shortest word over generators from 4 and their inverses. Moreover
we will denote |g| 4 = da(1,9).



Definition 2.25 (Quasi-isometries)

Let (Y, dy) and (X, dx) be two metric spaces. Given some constants L > 1 and A > 0, a
map f:Y — X is called an (L, A)-quasi-isometric embedding if for every y;,y, € Y we
have the following estimates:

() — A< dx(f(n), f(32) < L (y1,02) + A

A map f : Y — X is A-quasi-dense if for every x € X there is a y € Y such that
dx(z, f(y)) < A.

Amap f:Y — Xiscalled an (L, A)-quasi-isometry if f is both an (L, A)-quasi-isometric
embedding and is A-quasi-dense. A map is called a quasi-isometry if it is an (L, A)-quasi-
isometry for some L > 1, A > 0.

The following theorem is one of the most important facts about groups acting geometri-
cally on geodesic spaces. It was presented and proven in [2| (Proposition 1.8.19).

Lemma 2.26 (Svarc-Milnor lemma)

Let T' be a group acting geometrically on a geodesic space (X,d). Then T' is finitely
generated and for any finite generating set S and any o € X the map f: T — X given
by the formula f(g) = g - xo is a quasi-isometry between (I, ds) and (X, d).

2.3 Free products

Definitions and lemmas in this subsection are described in more detail and proven in
section IV of [1].

Definition 2.27 (Free product)

Let G and H be groups with presentations (Sg; Rg) and (Sy; Ry) respectively. Then
the free product of G and H is defined as the group G« H = (S¢ U Sy; Re U Ry), where
LI denotes the operation of disjoint union.

Lemma 2.28
The free product G x H is well-defined and does not depend on choice of presentations for
G and H.

Lemma 2.29 (Normal form lemma)

Each element w from the group GxH can be uniquely written in the form w = gihy...gnhy,
wheren =21, g1 € G, gay ..., gn € G\ {1}, hy,ho, ...y € H\ {1} and h,, € H. We will
call this form the normal form of w.

Fact 2.30
Let G and H be groups with presentations (Sq; Rg) and (Sy; Ry) respectively. Moreover
let we G+ H and let g1hy...gnhy be the normal form of w. Then

lg1ha-.gnhn| 4 = |g1| 4 + 1hal g+ -+ |gn] 4+ PN ] 4
where A = Sg LU Sy.

2.4 Dense amalgams

Definition 2.31
Let X be a metrisable topological space and let Y = {Y7,Y5, ...} be a countable family of
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subsets of X. We say that ) is null with respect to the metric d on X if lim,,_,, diam(Y,,) =
0 where diam(A) is the diameter of set A in the metric d.

Lemma 2.32

Let X be a compact topological space and let dy, dy be metrics compatible with the topology
on X. We will denote diameters in metrics di, dy as diamy, diamy respectively. Moreover
let Y, be a family of subsets of X such that lim, . diam;(Y,) = 0. Then we have
lim,,_, . diamy(Y,,) = 0.

Proof. Let us assume on the contrary that the diameters diams(Y;,) do not converge to 0.
Then there exist € > 0 such that there exist a subsequence Y, such that diamsy(Y,,, ) > .
Let Yn,, Yp, € Yn, be such that dy(yn,, ;) = . Now we take such a subsequence ny,
of ny, that lim;_, Y, and lim;_, y;kl both exist. Since lim;_,., diaml(Ynkl) = 0, then
Ny o0 Yy, = limy—ye0 yj%l. Therefore lim;_, dg(ynkl , ynkl) = 0 and thus dg(ynkl , ynkl) <e
for sufficiently large [. This contradiction completes the proof. O

Definition 2.33 (INull family)
We say that the family ) is null if it is null with respect to any metric compatible with
the topology on X.

An important concept apperaring in the main theorem of this paper is the operation of
dense amalgam. This operation was described in great detail in [6].

Definition 2.34 (Dense amalgam of compact metric spaces)

Let X1, X, ..., X,, be a collection of nonempty compact metric spaces. Then the dense
amalgam of X7, X, ..., X, is defined as the unique (up to homeomorphism) compact
metric space Y that can be equipped with a countable infinite family ) of subsets of Y
partitioned as Y = Y; U ), U ... U ), such that

(i) The subsets in ) are pairwise disjoint and for each i € {1,2,...,n} the family )
consist of embedded copies of the space X;;

) the family ) is null;
) each Z € ) is a boundary subset of Y (i.e. its complement is dense);
(iv) for each i, the union of the family ); is dense in Y/
)

any two points of Y which do not belong to the same subset from )’ can be separated
from each other by a clopen subset @) C Y which is )-saturated (i.e. such that any
element of ) is either contained in or disjoint with Q).

The dense amalgam of nonempty, compact metric spaces Xy, ..., X,, will be denoted by
(X1, ey X))

3 Limit sets

Definition 3.1
Let (X,d) be a CAT(0) space and let 7, be a sequence consisting of geodesic rays or
geodesic paths. Moreover let 7 : [0,00) — X be a geodesic ray. Then we will write

lim ~, =~
n—oo



1f for every t > 0 the point v,(t) is well-defined for almost every n € N and we have

Lemma 3.2

Let v, be a sequence of geodesic paths of length d,, in a proper CAT(0) space (X,d)
starting at a base point xo € X. If lim, ., d,, = 00, then there exist a geodesic ray vy and
a subsequence vy, of v, such that limy_,oc Vn, = 7.

Proof. Since lim,, o, d,, = oo, for each R > 0 the sequence ~,(R) is well-defined for
almost every n € N. Moreover, v, (R) € B(xo, R) for each n such that d, > R, so since
X is proper then B(zg, R) is compact, so there exist a subsequence 7, (R) of v, (R) that
converges. From Lemma 2.10, we can conclude that for all ¢ € [0, R| we have the following
estimation:

d(Yny (1), Yy, (1)) < %d(%k(R),%k,(R)) < d(Yny, (R); Yoy (R)).

So, since v, (R) was a Cauchy sequence, then ~,, (t) is also a Cauchy sequence, so it
converges. Now We Wlll define the sequences %S ). Let 7(0) = 7, and 7 Will be such
a subsequence of ”yn ) that ’y(kH (k + 1) converges. We will denote 75 = . Obviously
for all £ € N the sequence 7, (k) from some point is a subsequence of W ( ). Therefore
from the reasoning above we know that 7, (¢) is convergent for any ¢ € [0,00). Now let
v(t) = limy, 00 Yn(t). We will show that ~y is a geodesic ray. Let s,t € [0,00). From the
triangle inequality we have:

d(7(t),7(s)) < d(y(t), 7 (1)) + d(n (1), 7n(5)) + d(Fn(s),7(s))

= [s =]+ d((t),7n(t)) + d(7(s), Tn(s))
d(y(t),7(s)) Z d(3 (1), Tn(s)) = d(Fu(s), (5)) = d(Tn(s),7(5))
= [s = t] = d(v(1), (1)) = d(7(s),7n(s))

Therefore, from the squeeze theorem, d((t),v(s)) = |t — s|, which shows that v is a
geodesic ray and ends the proof. O]

The following observation concerning CAT(0) spaces will be needed in the later parts of
this section.

Lemma 3.3 (Triangle cutting lemma)
Let A, B,C be any points in a CAT(0) space (X,d), such that d(A, B) = ¢, d(A,C) =1
and d(B,C) = a where b > c. Then d(B,7a,c1(c)) < a.

Proof. Let A*, B*, C* be the vertices of a comparison triangle for A, B, C' and let D* be
such a point on the edge A*C* that |A*D*| = |A*B*|. Since A*B*D* is an isosceles
triangle then <A*D*B* < 7 and thus <C*D*B* > 7. Therefore from the definition of
CAT(0) space and the cosine formula we know that

d(B,C) = |B'C* = \/|B*D*[* + | D*C*[* — 2| B*D*| | D*C*| cos (<C* D* B*)

> \/|B*D*|* = |B*D*| > d(B,a,01(c)).



Limit sets are subsets of boundary that are necessary to formulate the main theorem of
this paper. They were described in [4] (section 3).

Definition 3.4
Let X be a proper CAT(0) space and let A C X. Then the limit set of A with respect to
zg is defined as

A A= {'y € 05y X 1y = lim Yp,0, for a, € A} ,
n—oo

where 2y € X is a base point.

The lemma below guarantees that the limit sets are well-defined and do not depend on
the choice of a base point zg.

Lemma 3.5
Let (X, d) be a proper CAT(0) space, let A C X and let zo,x1 € X. Then for every
v € Ay A there exist v € Ay, A such that v ~ ~'.

Proof. Let a, € A be such sequence that v = lim,, o0 V(zg,a,]- Since
lim d(zy,a,) > lim d(xo,a,) — d(zg, 1) = 00
n—o0 n—oo

then from Lemma 3.2 there is such subsequence a,,, of a,, that there exist a geodesic ray
~ = limy o0 Viz1,an,] € A, A. We will show that v ~ 4", Let ¢ > 0,¢ > 0 be any numbers
and let k € N be such that d(v(t), Viug,an,](t)) < € and d(v'(t), Vizy an,) () < €. Without
loss of generality we assume that d(zg,a,,) = d(z1,an,), let T2 = Y., )(d(21, an,))-
From triangle inequality we have d(zg, a,,) — d(z1,a,,) < d(zo, 1) and therefore from
convexity of the distance function for geodesic segments i, a,,]: Vzo,2, We know that

A(Vwo,an,) (1) Vioriang (1) = AV w21 (1), Vior.an ) () < max{d(zo, 21), d(an, , 22)} = d(zo, 71).
Therefore
d(v(#),7'(8)) < d(V(1), Voo.ang) (1)) + A Viwo a1 (1) Vs any ] (E))
+Ad(Vor.an,) (8,7 (1) < d(@o, 21) + 2¢,
which proves that v ~ ~/'. O

Definition 3.6 (Limit set)
The limit set of A is defined as

AA = ( U AIOA> / ~,

To€EX

where ~ is the relation of asymptoticity on geodesic rays. From Lemma 3.5 we conclude
that AA is naturally identified with set A, A for any base point xy € X. Topology on
the set AA is defined as the topology induced from 0.X.

Moreover, let I be a group such that I' ~ X, let G < I' be a subgroup of I" and let k € I’
be an element of I'. Then we can define the limit set of a subgroup and limit set of a

coset as follows:
AG = A(G - 2)

A(kEG) = A(kG - z)
foran z € X.
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Lemma 3.7
Let T be any group such that I' ~ X for a proper CAT(0) space (X,d), let G < T and
let x,2' € X. Then A(G - z) = A(G - 2').

Proof. Let 2o € X be a fixed point and let g, € G be such that lim, . Vzg.g,a] = 7
for a geodesic ray . Let t > 0, > 0 be any numbers and let n € N be such that

d(xg, g - ) > max {M +d(z,2),t + d(z, x’)} and d(Y(zg,g,-2 (1), 7(t)) < 5. Then we
have

2td(x, z") t}

d(an gn'l‘/> 2 d(x()agn'x)_d(gn'xagn'x/) - d(IO’gn'x)_d(xa l’/) > max { -

Let s = min {d(xg, g, - ©), d(z0, gs - ') }. From triangle cutting lemma and convexity of
the distance function we can now estimate

d(’y(t), Vzo,gn-2'] (t)) < d(’y(t), Vzo,gn 2] (t)) + d(V[xo,gnw} (t), Vzo.gn-z'] (t))

e t € t e t
< B + gd('Y[xo,gn-a:}(S)vV[xo,gn-m/](s)) < B + gd(gn * Ty Gn - :E/) = 2 + gd(l‘, xl) =&,

which ends the proof. n

Lemma 3.8
Let X be a proper CAT(0) space, let x € X and let T' a group be such that ' ~ X.
Moreover let G < T'. Then for any two cosets kG and k'G we have AkG = AK'G.

Proof. We will show that for any k£ € I' we have AG =2 AkG. Let x € X be any fixed
point. Then we have

AKG) = AkG - 2) = My (kG - 2) = Ao (kG - 7) 2 A (G - 2) = A(G - 7) = AG,

which ends the proof. n

4 Separation lemma

Definition 4.1 (Separating set)

Let (X,d) be a pathwise connected space and let 1,25 € X. We will say that a set
K C X separates x1 from x4 if 1 and 5 are in different pathwise connected components
of X\ K.

Definition 4.2 (R-separating set)

Let (X, d) be a metric space and x1,x2 € X. We will say that a set I C X R-separates x;
from x4 if there exist 51, Sy € X such that X\ I = S;USs, x1 € Sy, 29 € Sy, d(x1,1) > R,
d(xg, I) = R, and d(Sl, SQ) = R.

Definition 4.3 (A-neighbourhoods)
Let (X,d) be a metric space and K C X. We define the A-neighbourhood of K in X as
the set

{re X dz K) < A}.

We will denote the A-neighbourhood of a set K by Na(K).

11



Lemma 4.4 (R-separation lemma)

Let (Y, dy) be a metric space, let (X, dx) be a pathwise connected space and let f 1Y — X
be a (L, A)-quasi-isometry. Moreover let yy,ys be elements of Y such that there exists a
set I CY (3LA + ¢)-separates yy from ys for some € > 0. Then the set K = Na(f(I))

separates f(y1) from f(y2) in X.

Proof. Firstly, we acknowledge the fact that f(y1), f(y2) ¢ K. Without loss of gen-
erality we will show that f(y;) ¢ K. Assume on the contrary that f(y;) € K. Then
dx(f(I), f(y1)) < A, so by the definition of quasi-isometry we have the following estimate:

AZdx(f(1), f(y)) = intdx(f(y), f(y1)) = ;Ig %dY(yayl) — A

yel

3LA +¢ €
> —— — —A=2A+—-> A.
L jLL

We get a contradiction that ends this part of the proof.

Now let us assume that K does not separate f(y;) from f(y2). Then there exists a path
cin X \ K between f(y;) and f(y2), so there is also a sequence x1,xo, ..., z,, such that
1= f(y1), o0 = f(y2) and for all 7 € {1,2,...,n — 1} we have dx (z;, z;11) < 7. From the
definition of a quasi-isometry we know that there exists y € Y such that dx (z, f(y)) < A4,
so let 21, 29,..., 2, € Y be such that dx(z;, f(2;)) < A for all : € {1,2,...,n}. But then
for all i € {1,2,...,n — 1} we have the following estimates:

dy (2i, zit1) < Ldx (f(2i), f(2i41))+ LA < L(dx (f(2:), vi) +dx (i, Tip1)+dx (Tiga, f(2i1)))
FLAS LA+ —+A)+ LA <3LA+e.

Since the set I (3LA + ¢)-separates z; from z,, there exist sets S, Ss such that we have
S1USy=X\1, z1 € S1, 25 €Sy, d(x1,I) = R, d(x2,I) > R and d(S1,S3). Therefore
21 € Sy and z, € Sy, so let ig € {1,2,...,n} be the biggest index such that z;, € S;. Then
we have z;, 11 & S3: assume on the contrary that z;,11 € So. We can now estimate that

3LA + € < dy(Sl, Sg) < dY(Zio’Zio—‘rl) < 3LA + €.

This contradiction proves that z;,41 & S, therefore z;,1; € I. But then we have the
following estimate:

dX(‘Tio-i-h f(I>> < dX(xio-H: f(zio-l-l)) < A7

So w;,+1 € K and we have a contradiction with our choice of x4, ..., z,, which ends the
proof. n

Definition 4.5

Let I' = G' x H be a free product of groups and let w,v be elements of I'. Moreover let
w = g1hy...g,h, and v = g1 hy...gshz be the normal forms of w and v. Then w is called a
prolongation of v if

e w# 1 when v =1;

e n>n and for all i € {1,...,n — 1} we have the equalities g; = g;, h; = hi, 95 = G,
and hs # 1 when hy = 1;

e n>nand for all i € {1,...,n} we have the equalities g; = g;, h; = h; otherwise.
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Lemma 4.6

Let G and H be groups with presentations (Ag; Ra) and (Ay; Ry) respectively. Moreover,
letI'=Gx H and let A = AgU Ay be a set of generators of I'. Furthermore, let R > 0
and g, g1,92 € I'. If g1 is a prolongation of g, go is not a prolongation of g, da(g,g1) = 2R
and d4(g,g2) = 2R then the set I = B(g, R) R-separates g, from g in (I',dy).

Proof. Let
S1={¢ €T\ I: ¢ is a prolongation of g}

and
Sy ={g €'\ I: ¢ is not a prolongation of g}

be sets from the definition of R-separation. Obviously S; LI .Sy = I"\ I, and moreover we
have the estimates:

da(gi, I) = da(g1,9) — sup da(g,9") >2R—R=R
glle

dalg2 1) > dalg2,9) = sup da(g,¢") > 2R — B = R,
g

hence we only need to show that d (51, 52) = R. Let ¢’ € S1,¢” € Sy be any elements of
S, and S, respectively. Without loss of generality let’s assume that gMArM . gMNIpMY) is
the normal form of g and h®¥) # 1. Since ¢ is a prolongation of g then ¢’ has a normal
form gMpMD g RN gINFD RN (M) (M)~ Moreover, since ¢” is not a prolongation
of g, ¢" has the normal form gWr® .. g@RE GEADREAD  GERE) where L < N and
at least one of the inequalities g(Et) £ g+ pE+D £ B+ pold. Without loss of
generality let’s assume that ¢g("*Y # g+, We know that d4(¢',¢") is equal to the
length of

(6 . ()

expressed as the shortest word over generators A. Then

(). (o)

(=1)

(D) D UADREAD | ()N N (1))

9 g g

(1)

(Q(LH))(J) gEADREAD | gV R(N) g(NHD p(N+1) - (M)

A

~(K) (—1)‘
e

(G4) ] 1ot B o 0

(Q(K))“” (g(LH))(—l) g(L+1)mh(N)’A+|9(N+1)'_'h(M)‘A _ |g’g(_1)!,4+|g”g(_l)b > 2R,

Therefore d4(51,52) = R, which ends the proof. H

5 Some preparatory technical lemmas

Lemma 5.1

Let (Y, dy) be a metric space and (X, dx) be a proper CAT(0) space such that there ezists
an (L, A)-quasi-isometry f 1Y — X. Moreover, let y, be such sequence of points in'Y
that there exist a radius R > 0 and a positive constant 6 such that for every € > 0 there
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exist a pointy € Y and natural number N such that the ball B(y, R) (3LA+ 0)-separates
Yo from all points y, for n > N and

1

— < £
dy (y07 @
Then there exists a geodesic ray v such that 1imy, e V(£ (yo),f(yn)] = V-

Proof. Let us denote ¥, = Y[f(yo).f(yn)]- First we will show that
,}E{jo dx (f(yo), f(yn)) = o0

Let D > 0. We will show that there is a natural number N such that for every n > N
we have dx(f(yo), f(yn)) > D. Let ¢ = m, let y € Y and N € N be such that
I = B(y, R) (3LA + §)-separates yo from all points y,, for n > N and 1/dy(yo,y) < .
Then according to the R-separation lemma the set K = Na(f(I)) separates f(yo) from
f(yn). Thus the geodesic path between f(yo) and f(y,) has to pass through K. Therefore
we have the following estimations:

dx (F (o), F () > d(f(yo), K) > %dy<yo, I)—24
> (. §) ~ F) ~24> =~ 7 ~24=D,

and thus lim, .. dx(f(vo), f(yn)) = oc.

From Lemma 3.2 we conclude that there is a subsequence ,,, of v, such that limy_, v,, =
for a geodesic ray 7. Now we will show that lim, oo, = 7. Let t > 0 and € > 0 be
any constants. We will show that there exists N such that for any n > N we have
dx(7a(t),7(t)) < e. Let € > 0 be such that

~ . € 1
° s (2Lt(2LR +38A) + R+ 2LAc’ R+ 2LA + Lt> ‘

Let N € N and § € Y be such that for every n > N the ball I = B(j,R) (3LA +
d)-separates yo from all points y,, and W < €. Furthermore let k& be such that we
have n > N and dX('ynk (t),7(t)) < 5. We know from the R-separation lemma that
for all n > N the set K = N4 (f(I)) separates f(yo) apart from f(y,), and thus the
geodesic paths v, and 7,, have to pass through K. Let s, s’ be such that Tn(s) € K and

Yo (8') € K. Then we can estimate:

: ~ 1 ~
min(s, 5/) > dx(f(y), K) = dx(f(yo), f(I)) —A > Zdy(y()a[) —2A
1 R 1 R
> — ) — — —2A > — — — = 2A.
7 (w0, 9) = 7 > 7271
Since £ < m then we know that L%S — % — 2A > t. We can also estimate

dx (1 (8), Yn, (8") < diam(K) < diam(f (1)) + 24 < Ldiam(I) + 3A < 2LR + 3A.

Therefore from convexity of the distance function and triangle cutting lemma we have

md)( ('Yn(min@v 31))7 Ty (min(s, Sl)))

dX (%l <t>7 Vg, (t)) <

14



t t(2LR + 3A)

< mdx(’yn(s)a'ynk(sl)) < 1/L5— R/L —2A°

: =~ €
Since € < spmrRTsATeRTaLA then

t(2LR + 3A) €
= < —.
/L — R/L —24 =2

Now we have

dx (1), 7(0) < dx (u(t), 30, (1)) + dx (s (1), 7(0) < 5+ 5 = e

which ends the proof. O

Lemma 5.2

Let (Y,dy) be a metric space and (X, dx) be a proper CAT(0) space such that there exists
an (L, A)-quasi-isometry f 1Y — X. Moreover let y, be such a sequence of points in
Y that there exists a geodesic ray vy such that v = iMoo Vf(yo),f(yn)) - Furthermore, let
the positive number §, natural number N and bounded set I CY be such that for every
n > N, I (3LA + ¢)-separates yo from y,. Then there exist an s € [0,00) such that

V(s) € Na(f(1)).

Proof. Let t > sup,c; Ldy (yo,y) + 2A + 1 be a sufficiently large constant. Moreover we
take ng > N such that dx (V(s(yo),f(ymg )1 (1), 7(t)) < 1. Since

sup  dx(f(yo),z) <supdx(f(yo), f(y)) + A< Lsupdy(yo,y) + 24
x€NA(f(I)) yel yel

the entire geodesic segments between v(s(y,) r(yn,)) (), 7(t) and between 7(s(ye) f(yn,) (1),
f(Yn,) do not intersect the set Na(f(I)). Therefore, since the geodesic segments between
VI (o) £ umg)) (1), Y (t) and between (yo), 7(yny )1 (1), f(Un,) are outside of Na(f(I)) then (¢)
and f(yn,) are in the same connected component of X \ Na(f(I)). But from the R-
separation lemma we know that the set N4 (f(I)) separates f(yo) from f(y,,), and thus
it also separates (yo) from ~(t), therefore there exist an s € [0,¢] such that we have

V(s) € Na(f(1)). u

Lemma 5.3

Let (Y, dy) be a metric space and (X, dx) be a proper CAT(0) space such that there ezists
an (L, A)-quasi-isometry f : Y — X. Moreover, let y, and ¥y, be such sequences of points
in'Y that yo = yo and there exist geodesic rays y,7y such that lim, . Vo), f(ya) = 7 and
My, o0 V£ @o),f@n)) = - Furthermore let 6 > 0, R >0, N € N and j € Y be such that
for every natural number n > N the ball I = B(y, R) (3LA+ ¢)-separates yo from y, and
Yo from y,, where dy (yo,y) > R+2AL. Then we have the following estimate in Osajda’s
metric:

L
dy (yo0,9) — R —2AL

dsasorn(7,7) <

Proof. By Lemma 5.2 we know that there exist s, 5 € [0,00) such that v(s),7(s) € K
where K = N4(f([)). Therefore by the triangle cutting lemma we know that

dx (y(min {s,s}),7(min{s,s})) < diam(K).
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We now can write the following estimates:
diam(K) < 2A + diam(f(/)) < 3A+2RL

and

dy(yo, Q) — R — 2AL
i .

min {s, s} > dx(f(y), K) = dx(f(yo), f(I))—A = %dY(yoJ)—ZA >

Thus from convexity of the distance function we know that

dy (yo,y) — R — 2AL

inf {t € [0,00) : dx(y(¢),7(t)) = 3A+2LR}) > min{s,s} > 7

and therefore
L

d 7) < :
sat+2rL(7,7) dy (Y0,79) — R — 2AL

Lemma 5.4

Let (Y,dy) be a metric space and let (X,dx) be a proper CAT(0) space such that there
exists an (L, A)-quasi-isometry f 'Y — X. Moreover, let y, and ¥y, be such se-
quences of points in Y that yo = 3o and there exist geodesic rays v and 7y such that
My o0 Vi (yo), flyn)] = Y @A By o0 V@) f @) = V- Suppose there exist a ball I =
B(9, R), a natural number N and a positive constant 0 such that for every n,m > N the
set I (3LA + 0)-separates y,, from y,. Then we have v # 7, and in Osajda’s metric dy
on 0, X we have the following inequality:

1
Ldy (yo,y) + LR+2A+ 1

dy(7,7) =

Proof. Let y € Y, R > 0,0 > 0 and N € N be such that for all ny,ns > N the set
I = B(y, R) (3LA + §)-separates y,,, from y,,. Then we can estimate:

sup {dx (f (o), ) : © € Na(f(1))} < sup{dx(f(y0), f(y)):y eI} + A

<sup{Ldy(vo,y) + A:ye I} + A< Ldy(yo,y) + LR + 2A.

Let now t = Ldy(yo,9) + LR +2A + 1 and N € N will be such that for all n > N we
have the following estimates:

dx (Y1), Vs o). fwai) (1) < 1,

dx (Y1), s Go). £ (1) < 1.
From the triangle inequality we can write:
dx (y(t), Na(f(1))) = dx(f (o), 7(t)) = sup{dx (f (o), x) : @ € Na(f(1))}
t — Ldy (y0,9) + LR +2A =1,

=
dx(Y(t), Na(f (1)) = dx(f(50), 7(t)) — sup {dx (f (5o), ¥) - © € Na(f(I))}
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Therefore geodesic paths between Yir(yo),rw)1(t) and f(yn), Vir@o).r@(t) and f(yn),
Vo), fw)] (1) and Y(t), Vir@o), @1 (1) and (t) are not going through the set Na(f(7)).
Therefore v(t) and f(y,) are in the same pathwise connected component of X \ N4(f (1))
and (t) and f(y,) are in the same pathwise connected component of X \ N4(f(I)).
Since by the R-separation lemma the set N4(f(/)) separates y,, apart from ¥, in X, then
N4(f(I)) is also separates y(t) apart from 7(¢) in X. Therefore (t) # 75(t), which implies
v # 7. Moreover

dx (y(1),7(t)) = dx(y(t), Na(f(1))) + dx (Y(t), Na(f (1)) = 2

Y

and thus in Osajda’s metric dy we have

(N

1
t  Ldy(yo,9) + LR+2A+1

da(7,7) =

Lemma 5.5

Let (X, d) be a proper CAT(0) space, let v € 0,,X be a geodesic ray, let x, € X be a
sequence such that lim,, .. d(7(0),x,) = co. Suppose that there exists a constant A > 0
such that for any n there exists t > 0 such that d(~y(t), z,) < A. Then lim, e Yy (0),00] =

.

Proof. Let A > ¢ > 0,s > 0 be any constants. We will show that for sufficiently large
n we have d(v[y(0),z,](s),7(s)) < e. Let N € N be such that for any n > N we have
d(¥(0),z,) > 2 + A. We know that there exists a ¢ > 0 such that d((t),z,) < A, thus
from triangle inequality we have ¢ > d(v(0),z,) — d(v(t),z,) > *2. For simplicity of
notation let ¢ = min {¢,d(7(0),x,)}. Then from convexity and triangle cutting lemma
we have

S

d(7(8)Vr(0),21(5)) < ;d(v(t/),%(om](t ) < Ed( v(t),2n) < €

which ends the proof. O

Lemma 5.6

Let (Y,dy) be a metric space and let (X,dx) be a proper CAT(0) space such that there
exists an (L, A)-quasi-isometry f : Y — X. Moreover, let v € 0,,X be a geodesic ray
and let y, € Y be a sequence such that there exists a geodesic ray v € 0,,X such that
Y = 1My o0 Vi (yo), fyn)] - SUPPOSe that there exist a point § € Y, radius R > 0 and natural
number N such that the ball I = B(y, R) (3LA + 0)-separates yy from y, for n > N. If
there exists a number t = 6L*A + 2L6 +4A such that d(f(g),v(t)) < A then we have the
following inequality .

t—6L2A—2L5 —4A

where daprp 144 denotes the Osajda’s metric on 0., X .

dorp+aa(y,7) <

Proof. From Lemma 5.2 we conclude that there exist s € [0,00) such that we have
v (s) € Na(f(I)). We can now estimate that:

dx(7(t),7'(s)) <dx(v(t), f(9)) + dx(f(9),7'(s)) < A+ diam(N4(f(1)))
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< 3A+diam(f (1)) < 2RL + 4A.

Therefore we have min{s,t} > t — dx(v(t),7'(s)) > t — 2RL — 4A. From convexity of
the distance function and triangle cutting lemma we obtain that

dx(y(t —2RL — 4A),7'(t — 2RL — 4A) < dx(y(min {s, ¢}, (min {s,¢}))

< dx(1(),7/(s)) < 2RL + 44

and thus ]

!
< _
dorryan(7,7') < t—2RL —4A

6 Categorisation of geodesic rays

Definition 6.1 (generating sequence)
Let ' = G % H be a free product of groups. We will say that a sequence k, € I' is
generating when it is of one of three types:

(i) there are elements g1 € G, ga,93,... € G\ {1} and hy, ha, hs,... € H \ {1} such that
k, = gih1g2hs...g,h, for all n € N;

(ii) there are elements ¢; € G, 2,93, ..., gm € G \ {1}, h1, ho, h3,....;hy, € H\ {1} and
gl,gg,gg, ... € G such that k’n = glhlgghggmhmgn for all n € N,

(iii) there are elements hy € H, hy, hs, ..., hym € H\ {1}, g1,92,93, -, 9m € G \ {1} and
hi, hs, hs, ... € G such that k, = h1g1h2gs...hymgmh, for all n € N.

Definition 6.2 (separated sequences)
Let I' = G * H be a free product of groups. We will say that generating sequences k,, k,
are separated if one of the following conditions is satisfied:

e k,, k| are both of type (i) and k, # k!, for some n € N;

e k, k| are both of type (ii), k, = ¢1h1...gmhmdn and &k, = ¢\ h}...g. /b, G, for all
n € N and either m # m' or g;h; # gih, for some i € {1,2,...,m};

e k,, k| are both of type (iii), k, = hlgl...hmgmizn and k! = h’lg’l...h;l,g,'ﬂ,ﬂﬁn for all
n € N and either m # m’ or h;g; # hlg, for some i € {1,2,...,m};

o k,, k! are of different types.

Definition 6.3

Let I' = G x H be a free product of groups and let k,, k] be generating sequences.
An element g1hy...gmhm € T, where g1 € G, hy,ha,...;hp € H\ {1},92,93, ..., gm €
G\ {1}, h,, € H is called a separator between k,, and k!, if there exist an N € N such that
for any natural number n > N one of the sequences k,, k], consists only of prolongations
of gi1h1...g,mh,, and the other consists only of elements that are not prolongations of
g1h1...9mhy. Element gi1hy...g,mh,, € I is called the minimal separator if it is a separator
between k,, and k/, if it is a separator of minimal "length" m. The element ¢, h;...ghy € T
is called a common prefiz of generating sequences k,, k!, if there exists an NV € N such
that for every natural n > N both k,, and k!, are prolongations of gihy...¢m M.
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Lemma 6.4

Let ky, kI, be separated generating sequences. Then there exists a unique minimal separator
g1h1...gmhpy, between k,, and k], and it additionally satisfies the following property: there
exists an N € N such that for every natural n > N both k,, and k!, are prolongations of

® gihy. hy_1Gm if hyy # 1;
° glh1-~-gm—1hm—1 Zf hm =1.

Proof. The proof consist of analyzing many analogical cases. In each of the cases the
fact that the additional property from the statement holds is obvious and we omit its
justification.

e Both k, and k!, are of type (i). Let k, = g1h1...gnhn, kI, = g1 h}...g,h! for all n € N
and let m be the smallest number such that k,, # k... If g, # g}, then g1hy...hp—1Gm
is the minimal separator. If g,, = g/, then g1h;...¢; Iy, is the minimal separator.

e Both k, and k], are of type (ii), k, = g1h1...9mhmdn and kI, = g\ h\...g. /R, Gn.
Without loss of generality assume that m > m/. If for all i € {1,2,...,m'} we have
gihi = gihl, then g1hq...gp P o1 is the minimal separator. If there exists an
i € {1,..,m’' — 1} such that for all j € {1,...,i} we have g;h; = gih} and g; # g,
then gihy...h;_1g; is the minimal separator. If there exists an i € {1,....m' — 1}
such that for all j € {1,...,i} we have g;h; = g;h’; and g; = g;, then g1h;...g;h; is

j
the minimal separator.

e Both k, and k!, are of type (iii), k, = h1g1...ungmhn and kl = h’lg’l...h;n,g;l,ﬁn.
Without loss of generality assume that m > m/. If for all i € {1,2,...,m'} we have
hig; = hig., then hygy...hy G hpy 1 is the minimal separator. If there exists an
i € {1,...,m' — 1} such that for all j € {1,...,i} we have h;g; = h'g; and h; # h;
then higy...g;_1h; is the minimal separator. If there exists an i € {1,...,m’ — 1}
such that for all j € {1,...,i} we have h;g; = R)g; and h; = hj then higi...h;g; is

J
the minimal separator.

e One of the k,, k! is of type (i) and the other is of type (ii). Without loss of
generality we assume that k, is of type (i). Let k, = gi1hi...g,h, for all n € N
and let k], = gih}...g,,h! Gn. If for all ¢ € {1,2,....m'} we have g;h; = g.h}, then
1P ... G Py G 1 18 the minimal separator. If there exists an i € {1,...,m' — 1}
such that for all j € {1,...;i} we have g;h; = g;h} and g; # g; then gihy1...h; 19;
is the minimal separator. If there exists an i € {1,...,m’ — 1} such that for all
j € {l,..,i} we have g;h; = gjh; and g; = g; then gih;...g;h; is the minimal

separator.

e One of the k,, k!, is of type (i) and the other is of type (iii). Without loss of
generality assume that k, is of type (i). Let k, = gi1hy...gnh, for all n € N and
let kI = h’lg’l...h;l/g;l,l%n. If g4 # 1 and A} # 1, then g; is the minimal separator.
If gy = 1 and h} = 1, then g;h; is the minimal separator. If gy = 1 but b} # 1
and for all i € {1,...,m'} we have h;g; 11 = hg., then g1hy...hp g1 is the minimal
separator. If g = 1 but A} # 1 and there exists an i € {1,...,m’ — 1} such that for
all j € {1,...,i} we have h;g;11 = h}g; and h; # hi, then gihy...g;h; is the minimal
separator. If g = 1 but A} # 1 and there exists an i € {1,...,m’ — 1} such that
for all j € {1,...,i} we have h;g;;1 = hjg; and h; = hj, then gihy...higiy, is the
minimal separator. If g; # 1 but A} = 1 and for all i € {1,....m' — 1} we have
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gihi = g;h} ., and g,y = ¢/, then gihy...gpy Iy is the minimal separator. If g; # 1
but A} = 1 and for all i € {1,...,m’ — 1} we have g;h; = gih;,, and g,y # g,
then gihy...~py—1gny is the minimal separator. If g3 # 1 but A} = 1 and there
exist i € {1,...,m' — 2} such that for all j € {1,...;i} we have g;h; = gjh},, and
Gi+1 7# 9iy1, then gihy...h;giy1 is the minimal separator. If g; # 1 but A} = 1 and
there exist ¢ € {1,...,m' — 2} such that for all j € {1,...,7} we have g;h; = g}h},,

and g;41 = ¢i,,, then gi1hy...g;41hiy1 is the minimal separator.

e One of the k,, k] is of type (ii) and the other is of type (iii). Without loss of
generality assume that k,, is of type (ii). Let k,, = g1h1...9mhmJn and b g} ...h! , g;n,ﬁn
for all n € N. Without loss of generality assume that m > m’. If g; # 1 and b} # 1,
then g; is the minimal separator. If g = 1 and A} = 1, then g;h; is the minimal
separator. If gy = 1 but A} # 1 and for all i € {1,...,m'} we have h;g;11 = hlg,
then gihy...hpy Gy 41 s the minimal separator. If gy = 1 but A} # 1 and there exists
an i € {1,...,m'— 1} such that for all j € {1,...;i} we have h;g;y; = h}g} and
h; # h., then gihy...g;h; is the minimal separator. If g; = 1 but A} # 1 and there
exists an i € {1,...,m" — 1} such that for all j € {1,...;i} we have h;g;11 = hg]
and h; = h., then g1hy...h;g;+1 is the minimal separator. If g; # 1 but A} = 1 and
for all i € {1,...,m' — 1} we have g;h; = gih!,, and ¢,y = g,,,/, then g1hy...gm Ay is
the minimal separator. If g; # 1 but A} = 1 and for all i € {1,...,m' — 1} we have
gihi = g;h , and gny # g.,/, then gihy...hpy 1 gy is the minimal separator. If g; # 1
but A} = 1 and there exists an i € {1,...,m’ — 2} such that for all j € {1,...,7}
we have g;h; = g;h; and gi11 # gi1, then gihy...h;giy1 is the minimal separator.
If g # 1 but A} = 1 and there exists an ¢ € {1,...,m' —2} such that for all
j € {l,...,i} we have g;h; = g;h,, and g;1 = gi,, then gihy...giy1hiyy is the
minimal separator.

]

Lemma 6.5

Let T'= G« H be a free product of non-trivial groups and let T' ~ X for a CAT(0) space
X. Moreover let g1 € G, g2,93,... € G\{1} and hy, ha, hs,... € H\{1}. Then there exists
a geodesic ray v € Oy, X such that v = limy, o0 Vizg,g1h1gohs...gnhn-z0] 0€S €TISE.

Proof. Let Ag and Ay be finite sets of generators of G and H respectively, and let
A= Aq U Ay. From Svarc-Milnor lemma we know that there exists an (L, A)-quasi-
isometry f : I' — X between (I',d4) and X. Let €,d be any positive constants and let
M > max {%, 3LA + 5}. From fact 2.30 we know that

1
dA(l,glhnghg...thM) >2M >6LA+ 6 and 1/dA(1,g1hngh2...thM) < m < E.

Moreover for all n > 2M we have
da(gihi...gnhar, giha . gnhn) = da(l, gprsr - guhn) = 20— 2M > 2M > 6 LA + 20.

Therefore from Lemma 5.1 the limit 1im,, o0 Viwg,g1h1goho...gnhn-o] dOES €xist. O

Lemma 6.6
LetT' = G+ H be a free product of groups and let T' ~ X for a proper CAT(0) space (X, d).
Moreover let xo € X be any point and let k,, k], be separated generating sequences such
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that the limits limy, o0 Vizg kp-z0] = V> UMn—so0 Ve kt,-zo] = V' JOT geodesic rays v,y € 0y, X
respectively. Then we have v # ~'.

Proof. From Lemma 6.4 we know that there exists a separator between k, and £,
so let ¢ € I'" be any such separator between k, and k. Since lim, Viwo,kn-zo) aNd
My, 00 Vizo k!, -] dO exist, limy, oo d(xo, Ky - 0) = limy, o0 (0, k7, - ©9) = 00. From Svare-
Milnor lemma we know that for a finite set of generators A of T', the spaces (X, d) and
(I'yd4) are (L, A)-quasi-isometric, and thus lim, . da(1, k,) = lim, oo da(1, k) = 0.
Therefore lim,, o da(g, kn) = limy, 00 da(g, kl)) = 00. Let R > 3LA and let N € N be
such that for all natural numbers n > N we have d (g, k,) > 2R and d4(g,k],) > 2R.
Therefore from Lemma 4.6 the ball I = B(g, R) R-separaes k,, from &/, for all n,n’ > N.
From Lemma 5.4 we conclude that v # +'. ]

Lemma 6.7

Let I' = G * H be a free product of nontrivial groups and let T' ~ X for a proper CAT(0)
space (X, d). Moreover let v be a geodesic ray beginning at xo. Then v = lim,,_, Viwo,kn o]
for some generating sequence k,.

Proof. Let v € 0,,X be any geodesic ray. Moreover let Ag, Ay be any finite sets
generating G, H respectively. From Svarc-Milnor lemma we know that f : zg — ¢ - 2 is
an (L, A)-quasi-isometry between (I', d4) and (X, d) and thus I'-xg is A-quasi-dense in X.
We define the set C C T as

C={gel:3t>0d(g-zo,v(t) <A)}.

Since for every t > 0 there exists a g € I" such that d(y(t), g-zo) and for any ¢, ¢ such that
t+2A > t’ there cannot be any point € X such that d(y(t),z) < A and d(y(t'),z) < A
then set C' is infinite.

Let g € I' be such an element that infinitely many elements in C' are prolongations of g.
We will show that there exists at most one element ¢’ which is such a prolongation of g
that g~'¢’ € G U H and infinitely many elements in C' are prolongations of ¢’. Assume
on the contrary that there are two such elements ¢’, ¢”. Then ¢” is not a prolongation of
¢’ and ¢’ is not a prolongation of ¢”. We will now define

C"={g € C: g is a prolongation of ¢'}

C" ={g € C: g is a prolongation of ¢"} .

Since sets C’ and C” are unbounded, we conclude from Lemma 3.2 that there are se-
quences ¢, € C' and ¢, € C" such that lim,, o0 Vzo,e 2] = ¥ and imy, o0 Vizg,cr-zo] = 7"
for some geodesic rays 7/ and +”. Moreover for any § > 0 and sufficiently large n’, n”
we have d4(¢',¢c,)) = 6LA + 26 and da(¢',cl,) = 6LA + 26, thus from Lemma 4.6 the
set I = B(¢',3LA + ) (3LA + §)-separates ¢, from ¢!,. Therefore from Lemma 5.4
7" # +". On the other hand however, we know from Lemma 5.5 that lim, oo Vjzg,e. -20] =
imy, o0 Vizo,e-20) = V- The contradiction ends this parts of the proof.

Now we need to consider two cases:

e There are infinite sequences of elements g; € G, hy, ho, ... € H\{1}, g2, 93,... € G\ {1}
such that for every element k, = ¢g1h;...g,h,, infinitely many elements from C' are
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prolongations of k,. Let ¢ > 0 be any positive number, let m > 6LA + 2¢ be a
natural number and let ¢, be any sequence consisting of all points in C'. From
Lemma 5.5 we know that lim, o Vzg,chzg = 77 Moreover, for any m € N there
are ¢ > 0, N € N such that for any natural number n > N the element ¢, is a
prolongation of k,, and d4(c,, k) = 6LA + 2¢. Therefore from Lemma 4.6 the
ball I,,, = B(kp,3LA + ¢) (3LA + ¢)-separates 1 from ¢,, and thus from Lemma
5.2 there exists an s, > 0 such that v(s,,) € Na(f(In)). From the definition of
(L, A)-quasi-isometry we get the following estimate

d(Y(5m), b - o) < diam(Na(f (1)) < 24 + diam(f(1,,,)) < 6L?A + 2Le + 3A.

Therefore from Lemma 5.5 we know that

I Y ko) = -

There is an element ky € I" such that infinitely many elements of C' are prolongations
of ko, but there are no prolongations k(| of ky such that in C there are infinitely
many elements that are prolongations of kj. Without loss of generality we can
assume that kg is of the form gyhq...gmhy for g1 € G, hy, ha, ..., h,, € H\ {1} and
g2, -, gm € G\ {1}. Let ¢, be a sequence consisting of all prolongations of ky that
are in C and let g, be such that ¢, is either equal to, or is a prolongation of kyg,.
Suppose that there exists an € > 0 such that there are infinitely many ¢, such that
da(cn, kogn) < 6LA + 2¢. Let t,, be such that d(c, - zo,7(t,)) < A, then we have

d(y(t), kogn - 10) < d(Y(tn), cn - o) + d(cp - To, kodn - 7o) < 6L*A + 2Le + 2A.

Since this estimate does not depend on the choice of n then from Lemma 5.5 we
have

li 6 ] = Y.
nl_{{.lofy[m,kogn o] Y

Now suppose that there are only finitely many ¢, such that d4(c,, kog,) < 6LA+2¢.
From Lemma 5.5 we know that lim, e Vizg,c,-20) = 7, thus for a given s > 0 and
m > ¢ > 0 let N € N be such that for all natural n > N we have

d<7<8)7 Vzo,cn-z0) (3)) < €,

[6L2A + 2Le + 3A]Ls
€

+ALA+6L2A + 2L%

|k’0§n|,4 2

and d4(cn, kogn) > 6LA+2¢. Then from Lemma 4.6 the ball I = B(kog,,3LA+¢)
(BLA + ¢)-separates 1 from ¢, in (I';d4). From the R-separation lemma we know
that the set K = Na(f(I)) separates xy from ¢, - xq, thus there is a ¢ such that
Vizosen-o] (t) € K. Now we have the following estimates:

diam(K) < 6L*A + 2Le + 3A

and

min {#, d(zo, kogn)} > % ~ A~ diam(K) > |°+|A — 4A — 6L2A — 2Le

[6L2A + 2Le + 3A]s
- :

>
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For simplicity we will denote ¢ = min {¢, d(xo, kog,)}. From convexity of distance
function and triangle cutting lemma we have

d(Y(8), Vao,kogn-20] () < d(V(5), Viwoen-wo] (5)) + A(Vizo,en-20] (5)s Viwoskogn-20] (5))
S S ~
<€+ Fd('y[l’oycnwo] (t/)7 7[$o,ko§n~x0](t/>> Se+ Pd(’y[$07cn'$0] (t)7 kogn - IO)

<e+ ;diam(K) < 2e.

Therefore limy, o V(zg,kogn-2] = 7 Which ends the proof.

Lemma 6.8

LetT" = G*H be a free product of groups, let ' ~ X for a proper CAT(0) space (X, d) and
let xo € X. Moreover let ky, k,, be such generating sequences that lim, o Vizg kn-z0] = Y
and My, o0 Vizokt zo] = 7 for geodesic rays v,v'. Let k be a common prefiz of ky, k),.
Furthermore let A be any finite set of generators of I'. There exists a constant R > 0
(depending only on I', X, xy and A) such that for every € > 0 there exists a constant
N € N such that if |k| , = N then dr(v,7') < € for an Osajda’s metric dr on 0y, X.

Proof. From Svarc-Milnor lemma we know that f : g — ¢ -z is an (L, A)-quasi-isometry
between (I',d4) and (X,d) for some L > 1,A > 0. Let § > 0 be any number, let
R =3A+2(3AL + §)L and for given € > 0 let

L
N > max{g +5LA+5,2(3AL+5)}

be a natural number. Since |k|, > N > 2(3AL 4+ 0) and |k,|, — oo, |kl,| 4 = o0, then
there exists an M € N such that for any natural number n > M from Lemma 4.6 the set
I = B(k,3LA+6) (3LA+ 6)-separates 1 form k,, and 1 from k,. Therefore from Lemma
5.3 we have the following estimate:

L

d " <
W) S G T3rA—s—204 = °

which ends the proof. O

Lemma 6.9

Let T' = G x H be a free product of infinite groups, let ' ~ X for a proper CAT(0)
space (X,d) and let xyg € X. Moreover let v € 0,,X be any geodesic ray and let A
be any finite set of generators of I'. There exist a constant R > 0 such that for every
e > 0 there exist generating sequences k,(f),kgi),krr(fm of type (i), (ii), (iii) respectively
such that lim,_ Voo k) zo] = A Timy, e Vieo ki o] = A limy, e Voo k) o] = ~ ()
for geodesic rays v, v~ and dp(v,vD) < &,dg(y, 7)) < ,dg(y, 7)) < € for
an Osajda’s metric dg on 0., X .

Proof. From Svarc-Milnor lemma we know that f : ¢ — ¢ - zo is an (L, A)-quasi-
isometry between (I',d4) and (X,d) for some L > 1,A > 0. Let 6 > 0 and let
t> % +6L2A + 2L5 + 4A be a sufficiently large positive constant. Since from the def-
inition of (L, A)-quasi-isometry the set I' - xy is quasi-dense in X, then let ¢ € T" be
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such that d(k - zo,7'(t)) < A. Let g € G\ {1}, h € H \ {1} be fixed elements and let
gn € G, h, € H be any two sequences of elements of G, H such that g, # §¢,, and B =+ -
for n # m. Note that since sequences §,, h,, consist of pairwise distinct elements then

limy, o0 [Gn] 4 = limy oo |y W o0o. Let us consider two cases:

e k has normal form g,h1..9,,h,,, Where h,, # 1. Then we define

k@ — g1hi...gnhy, for n <m
" glhlgmhm(gh)n—m for n > m,

k" is such a subsequence of gihi...g,mdn that there exists a geodesic ray 7

such that 7 = lim,,_, Voo b9 } kS is such a subsequence of g1h1...GmAmGhn
that there exists a geodesic ray 7 such that 4 = lim,,_ Vo £5) )

e k has normal form ¢1h;..g,,hy, Where h,, = 1. Then we define

g1hi...gph, for n <m
kﬁf) = gihi...gmh for n =m
gihi...gmh(gh)"~™ for n > m,

kYD is such a subsequence of g1h;...9mhgy, that there exists a geodesic ray 7 such
that v = lim,_, Vi b9 -z0] kU™ is such a subsequence of g hy...gmhy that there

exists a geodesic ray v such that v = lim,,_,o Vo k) o)

(4) k(ii) k(iii)

In both cases all of the sequences ky’, ky ", kr, ’ consist only of prolongations of k& for
n > m. Therefore from Lemma 4.6 we know that there exist N € N such that for natural
n > N the ball I = (k,3LA+0) (3LA+ §)-separates 1 form kY, k" and k5. Therefore
from Lemma 5.6 we know that for R = 6L2A+2LJ+4A we have the following 1nequalities
in Osajda’s metric dg:

dr(7,7") < e, dr(v,7") < e, dr(7,7") < e.

Lemma 6.10

Let ' = G % H be a free product of groups, let ' ~ X for a proper CAT(0) space (X,d)
and let xg € X. Moreover let A be any finite set of generators of I' and let k,, k!, be such
generating sequences that 1imy, e Viwg kp-zo) = ¥ ANd 1My 500 Viwg b zg) = ~" for geodesic
rays v,7v'. Let k be a separator of k,,k|,. There exist constants a > 1,b > 1 depending
only on T', A, X and xq, such that da(y,7') > where dy is an Osajda’s metric on

e

1
alk] 4+b?

Proof. Let f : g — g -z be an (L, A)-quasi-isometry between (I';d4) and (X, d) and
let @ = L, b= L(BLA+ 0) +2A + 1. From the definition of a separator and Lemma
4.6 we know that there exists a natural number N such that the set [ = B(k,3LA + 0)
(BLA +9)- separates ky, from ks for n,n’ > N. Therefore from Lemma 5.4 we know that
da(v,7') = W’ where dj is an Osajda’s metric on 0,,X. O
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7 Proof of the main theorem

Theorem 7.1
Let T' = G x H be a free product of infinite groups such that T' ~ X for a proper CAT(0)
space (X,d). Then 0X can be expressed in terms of AG and AH in the following way:

0X = (NG, AH).

Proof. The proof will naturally split into five parts, each corresponding to the respective
axiom of the dense amalgam as in definition 2.34. Let Vo = {A(KG) : k €T}, Yy =
{A(kH):k eTl} and let Y = Yo U Yy be distinguished families of subspaces of 0.X.
Moreover let Ag, Apg be finite sets of generators of GG, H respectively and let A =
AG LA H-

(i)

(i)

From Lemma 3.8 we know that for each A(kG), A(K'G) € Vg and AH, AK'H € Yy
we have A(kG) = A(K'G) and A(kH) = A(K'H). Let Y1,Y; € Y be two different
copies of AG or AH. Then we need to consider two subcases:

One of the copies Y7, Y5 is a copy of AG and the other is a copy of AH. Without
loss of generality let Y| = AkG and Y, = A(K'H). Assume on the contrary that
there exists a £ € A(kG) such that £ € A(K'H). Then there is v € A, (kG - z¢) such
that v € A, (K'H - x). From the definition of limit set we obtain

= lim 2 = lim he .
Y e Viwo,kgn-xo] ot Vzo,k' hn o]

but ¢, = kg, and ¢, = k'h, are separated generating sequences. Therefore from

Lemma 6.6 we obtain limy, e Vjzg,kgn-z0] 7 1iMn—s00 Vwe,k'hn-z0]> & contradiction.

Both Y; and Y5 are copies of AG or of AH. Without loss of generality assume
that Y7 = A(kG) and Y2 = A(K'G) where k # kg for every g € G. Assume on
the contrary that there exists a & € A(kG) such that £ € A(K'G). Then there is a
v € Ay (EG - o) such that v € A, (K'G - zg). From the definition of limit set we
obtain v = limy, o0 Viwo,kgn-z0] = HMn—oc Vizo,k'g,-z0], PUL ¢ = kgn and ¢, = K'g,, are
separated generating sequences. Therefore from Lemma 6.6 we obtain

lim ) lim Yo -
s Y(z0,kgn-zo] 7é oo Yzo,k' gn-zo)

We know from Lemma 2.32 that it is enough to show that the family ) is null with
respect to any preferred metric d compatible with the topology on 0X. We will
show that both families Vs and Yy are null. Without loss of generality we need
only to show that for the former. Let zy € X and let R be a constant from Lemma
6.8 for the boundary 0,,X. Suppose on the contrary that there exist an infinite se-

quence of cosets g§”)h§”)...gg()n) hf:()n)G such that diamp(Ag, (¢ h{™...g" kA hy:?n)G
x9)) > & where diamp is a diameter in Osajda’s metric dg. Moreover for the
¢ given above, let N be the constant from Lemma 6.8. Since the set of genera-

tors A is finite, there are only finitely many words g%n)h(") g(n()n)h(n()n) such that
g g ”)> < N. Let ng € N be such that [g\"n{")...g"0) p"0) 1 >

m(n) m(no) m(no)
N. For the sake of smlphfymg notation we will denote k& = g1 )h(”(’) gggl)o)hf;?zo).

Then let v,7" € Ay (kG-0) be any geodesic rays and let v = limy, o0 Vizo kgn-z0]s ¥ =
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(iii)

im0 Viwo kgt -z0], Where gn, g, € G. Note that kg,, kg, are generating sequences
and k is their common prefix. From Lemma 6.8 we get dr(v,7’) < ¢, thus

diam(A,, (kG - z9)) < e.

The contradiction proves that the family )¢ is null.

Let Y € Y be any of the embedded copies of AG or AH, without loss of generality
we will assume that Y = A(g1h1...gmhmG). Moreover let R be the constant from
Lemma 5.9, let v € Ay (91h1...9mhmG - 7o) and let € > 0 be any positive number.
Then from Lemma 6.9 we know that there exists a generating sequence k;,, of type (i)
such that v = limy, o0 Vizg kn-ao) a0d dg(7,7) < € for an Osajda’s metric dg on 0, X.
The generating sequence k, is separated from any generating sequence of type (ii),
thus it is separated from all generating sequences k], = g1h1...¢mRmGn, where g, € G.
Therefore from Lemma 6.6 v # " for any 7" given as limy o0 Vizo,g151...gmhmgn-zo]s SO
v & Moo (g1h1 ... gmhmG - xg). From the arbitrariness of the choice of € we conclude
that Y is a boundary subset.

Without loss of generality we will show that |J)g is dense. Let R > 0 be the
constant from Lemma 6.9 and let v € 0,,X be any geodesic ray. Then it fol-
lows from Lemma 6.9 that for any € > 0 there exists a geodesic ray v such
that dg(y,7") < e in Osajda’s metric dg on 9,y X and v = 1My, o0 Viug o zo]
where k, = g1hi...gmhmdn is a generating sequence of type (ii). Therefore v ¢
Azy(g1h1-- GG - o) € |J Vg, and thus | Ve is dense in 0X.

Let 7,7 € 0,,X be any two geodesic rays such that v,+" do not belong to the same
subset in Y and let v = Lm0 Vaokn-zo]: Y = UMpso0 Vizo,kr,-wo] fOr generating
sequences ky, k!, which we can always assume dueto Lemma 6.7. Then k,, k!, are
separated. Let k£ be any separator between k, and k. For simplicity of notation
let K be the set of such generating sequences k! that there exists an N € N such
that for any natural n > N, the element k! is a prolongation of k. We will show
that the set

Q = {’y” € Dy X 19" = nli_g)lo’y[xo,kg.zo]: k, € K}

is clopen and Y-saturated. Let vy, € @ and 75 € 9, X \Q. From Lemma 6.7 we know

that v; = lim,, Vi 4D 0] and v = lim,, o0 Vo 42 o]’ and from the definition of

() we know that the sequence kY for some point is a sequence of prolongations of £
and no element of &\ is a prolongation of k. Therefore from Lemma 6.10 we know

that there exist a > 1,b > 1 such that d, ( 1 4 )) |k| -5 Thus
m _1
U B+, +b)=Q
o a |k|A
yeH
U B (7(2)7 ﬁ) = aon \ Qa
10,0\ alklat

where B denotes a ball in Osajda’s metric dy. Therefore the set () is clopen.
Now let Y € ) be any of the embedded copies of AG or AH. Then we know
that Y is of form A(k’G) or A(kH). Without loss of generality let us assume that

Y = A(kG) and k has a normal form g¢1h;...gnmh,. For every 4,7 € Ay, (EG )
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we know that ’3/ = lim, o0 V10,9171 ---gmhm dn 0] and :? = lim,, o0 Vw0,91P1 .- gmbhmGn-z0] s
where §,, g, € G. From the definition of prolongation we conclude that either both
g1hi...9mhmGn and gihy...gmhmg, are consist of prolongations of k or neither is.
Therefore from the definition of ) either both 4,7 € @ or both 4,7 & @ thus either
Y CQorYNQ =0. Therefore Q is Y-saturated.

O

8 Open problems and concluding remarks

In this section we describe a few problems we encountered while working on the main
theorem.

Let T" be a group and let I' ~ X for a CAT(0) space X. For some subgroups G of I it
appears that there is a non-empty, convex, closed, G-invariant subspace X4 of X such
that G ~ Xg.

Example 8.1

For example if we take the group I' = Z? that acts on the CAT(0) space X = R? by
translations (n,m) - (z,y) = (x +n,y + m). If we take G = Z x {0} subgroup of I' then
R x {0} is a subspace of X having the properties described above.

Open Problem 8.2
Let T' = G x H be a group for some groups G, H and T ~ X for a CAT(0) space X. Is
there a non-empty, convex, closed subspace Xqg of X such that G ~ Xg?

If the answer to the above question were to be affirmative, then it would be possible to
reformulate the main theorem in terms of subspaces of X and their boundaries, because if
such a subspace X would exist, then 0 X = AG. Personally I believe that if a subgroup
is a factor in a free product, then a non-empty, convex, closed subspace does always exist.

Open Problem 8.3 is a more general approach to the observation from beginning of this
section.

Open Problem 8.3
Let T' be a group and X be a CAT(0) space such that I' ~ X. What conditionsdoes a
subgroup G of I need to meet for the existence of the subspace X¢g?

It was shown in [2] (Proposition 11.2.8) that if the subgroup G of I is finite, then there
exists such a non-empty, convex, closed subspace of X. However, there are some groups
that have infinite subgroups G for which the subspace X as described above cannot
exist. It is not hard to observe that a necessary condition for existance of X is that the
subgroup is undistorted in I". The following example of an infinite distorted subgroup in
a CAT(0) group was presented in |7] (Theorem 1.6).

Example 8.4 (Distorted CAT(0) group)

Let I = (ag, a1, as; apa; = a1aoa; ‘agaz = a1). Then T' ~ X for a CAT(0) space X and I’
has a finitely generated free subgroup F, such that the distortion of F, is a polynomial
function of degree 2.

Generalizing the main theorem of this thesis should also be possible. Firstly, by using
the properties of dense amalgams described in [6], we can extend the definition of dense
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amalgam to the case where one or more of the X; spaces are empty. This would allow us to
describe the case of a free product of non-trivial groups. However, applying these changes
requires some work to formally define all the cases and modify some of the lemmas.

Moreover, it should also be possible to generalize the main theorem to free products with
amalgamation over a finite subgroup and HNN-extensions over finite subgroups. In the
most general case, this can lead to a general theorem describing boundary at infinity for
group graphs in which the edge groups are finite. This approach also requires modifying
some lemmas, but in terms of the necessary ideas, it should not be significantly different
from the methods presented in this thesis.
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