Graphical Models, UWr March 2020
PRACTICAL SELECTION OF THE BEST
GRAPHICAL GAUSSIAN MODEL

Let X = (Xq,...,Xp)! be a Gaussian random vector
N(£,X) on RP with unknown mean £ and covariance X

We have a sample X(1) x(2) _ x () of size n of X.
We want to do model selection among all Gaussian
graphical models G = (V, E) with |V| = p.

Which graphical model G = (V, E) with |V| = p fits the
best the sample X(1) x(2)  x()7

Equivalently,
where to put zeros in the precision matrix K = >—17
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METHOD 1. CASE n > p: COMPUTATION
OF EMPIRICAL SCALED PRECISION MATRIX

Kemp

1.1. SAMPLE (EMPIRICAL) COVARIANCE MATRIX:

1 & _ : _
Temp =~ > (XW - X)XV - )T € Sym™°(p x p)
1=1

> emp IS the Max Likelihood Estimator of X

1.2. SAMPLE (EMPIRICAL) PRECISION MATRIX:
Kemp = Zemp

1.3. SAMPLE (EI\/IPIRICkAL) SCALED PRECISION
MATRIX: Kemp, kim = \/—\/% —Plm|V\{l,m}-

When k;,,, ~ 0,
we decide Xl A Xm |XV\{l,m} and klm = 0.




2. BIG DATA CASE [n < p

GRAPHICAL LASSO METHODS

(also possible in the case n > p)

Big problem when n < p: o4, does not exists,
Kemp = Zemp Makes no sense



2.0. Shortly on LASSO
(in programme of Big Data Statistics, Master)

Classical Linear Regression problem

Y =XB+¢ (e = noise)
B=mm%MW—XM§

— has a unique solution when n > p (classical case)
— has infinity of solutions when n < p (Big Data case)

Genius idea of LASSO:

one introduces a penalty A", 3| = Al|B][1, A >0

Y =XB+¢ (e = noise)
B = arg m[;n(||Y—XBII3+A|I5I|1), (A > 0).



Regression LASSO method generates sparsity, i.e. a
lot of zero coefficients 3B; of the vector 8 in the regres-

sion problem.

If \ is bigger, we get more sparsity (more 5, = 0)

R package: glmnet(X,Y,alpha = 1)



Graphical Lasso = G-Lasso

In graphical models there is, in principle, no response
variable Y to X (unsupervised learning).

We seek to have zeros in the precision matrix K.
2 methods of Graphical Lasso exist:
e by Penalized Log-Likelihood (Friedman 2008)

e by Regression LASSO for each X, as response
(Meinshausen, Biihimann 2006)



2.1. Graphical Lasso via Penalized Log-Likelihood
(d'Aspremont, Banerjee, Ghaoui 2008,
Friedman, Hastie, Tibshirani 2008)

Regression LASSO has an equivalent formulation via
maximization of the L1-Penalized Log-Likelihood. One
exploits such formulation for a method of Graphical
_asso.

The likelihood (density) function of the sample
x@ o x®).

f@B), . 2 K) = (2m)7P/2(det K)"/2 exp(—5(Zemp, K))
where Zemp =157 1 (2 — ) (2D — )7

(this will be proved in a further lecture)



The log-likelihood function
log f(zV). ... 2™ K) = ¢+ g log det K — g<zemp, K))

Graphical Lasso via Penalized Log-Likelihood:
K = arg maxKesym+(p)[Iog det K — (Xemp, K) — A2 | Kim ]

where XA > 0, 2Zemp= Sample covariance matrix.

The penalty is proportional to the Ll-norm of the off-
diagonal entries of the precision matrix K.

Fact.The resulting optimal precision matrix K has spar-
sity in off-diagonal terms ki,,.

R package: glasso



2.2 Regression LASSO for each X, as response
variable to all other Xg (" ‘Neighborhood-Based Likelihood")

(Meinshausen, Biihimann 2006)

Main Idea. In the linear regression X; = > ;«; 5;; X;+¢€;
we estimate the coefficients 5;; by

5” . COU(X7,7X]|XV\{ZJ}) . _’%ij
1) T - ’
VCL?“(X]|XV\{ZJ}) Kiq
(Choose X;, X;, treat all other variables as fixed,
— -1 __ 1 Kjj —Kkij
use ZXi,Xj|Xv\{i.j} - K{i,j} T detKy, (_’Z&‘z_]_ KMJ) )

Conclusion: [323 = O iff Rij = 0.




Method of Meinshausen, Buhlmann:

(i) Apply LASSO to each X; in turn as the response
(apply usual LASSO p times)

(ii) Decide i # j in the graph G if both 3;; =0 = 3;;.
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COMPUTER PROBLEM
5-9 March, 2020

Apply 3 Methods (Method Kemp and 2 methods of
graphical Lasso) for the famous Frets’ Heads data (1921):

The head dimensions:
length L, and breadth B;, : =1,2
of 25 pairs of first and second sons were measured.

Thus we have n = 25 and p = 4.

Frets’ Heads Data is available in R:
library(boot)
frets
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Table 5.1.]1 The measurements on the first and second adult sons in a sample of
25 families. (Data from Frets, 1921.)

First son Second son

Head Head Head Head

length breadth length breadth
191 155 179 145
195 149 201 152
181 148 185 149
183 153 188 149
176 144 171 142
208 157 192 152
189 1350 190 149
197 159 189 152
188 152 197 159
192 150 187 151
179 158 186 148
183 147 174 147
174 150 185 152
190 159 195 157
188 151 187 158
163 137 161 130
195 155 183 158
186 153 173 148
181 145 182 146
175 140 165 137
192 154 185 152
174 143 178 147
176 139 176 143
197 167 200 158

190 163 187 150




