
Graphical Models, UWr March 2020

PRACTICAL SELECTION OF THE BEST

GRAPHICAL GAUSSIAN MODEL

Let X = (X1, . . . , Xp)
T be a Gaussian random vector

N(ξ,Σ) on Rp with unknown mean ξ and covariance Σ

We have a sample X(1), X(2), ..., X(n) of size n of X.

We want to do model selection among all Gaussian

graphical models G = (V,E) with |V | = p.

Which graphical model G = (V,E) with |V | = p fits the

best the sample X(1), X(2), ..., X(n)?

Equivalently,

where to put zeros in the precision matrix K = Σ−1?
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METHOD 1. CASE n > p: COMPUTATION
OF EMPIRICAL SCALED PRECISION MATRIX
K̃emp

1.1. SAMPLE (EMPIRICAL) COVARIANCE MATRIX:

Σemp =
1

n

n∑
i=1

(X(i) − X̄)(X(i) − X̄)T ∈ Sym>0(p× p)

Σemp is the Max Likelihood Estimator of Σ

1.2. SAMPLE (EMPIRICAL) PRECISION MATRIX:
Kemp = Σ−1

emp

1.3. SAMPLE (EMPIRICAL) SCALED PRECISION
MATRIX: K̃emp, k̃lm = klm√

kll
√
kmm

= −ρlm|V \{l,m}.

When k̃lm ≈ 0,
we decide Xl ⊥⊥ Xm |XV \{l,m} and klm = 0.
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2. BIG DATA CASE n < p

GRAPHICAL LASSO METHODS

(also possible in the case n ≥ p)

Big problem when n < p: Σ−1
emp does not exists,

Kemp = Σ−1
emp makes no sense
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2.0. Shortly on LASSO

(in programme of Big Data Statistics, Master)

Classical Linear Regression problem

Y = Xβ + ε (ε = noise)

β̂ = arg min
β
‖Y −Xβ‖22

– has a unique solution when n > p (classical case)
– has infinity of solutions when n ≤ p (Big Data case)

Genius idea of LASSO:
one introduces a penalty λ

∑p
i=1 |βi| = λ‖β‖1, λ > 0

Y = Xβ + ε (ε = noise)

β̂ = arg min
β

(‖Y −Xβ‖22 + λ‖β‖1), (λ > 0).
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Regression LASSO method generates sparsity, i.e. a

lot of zero coefficients βi of the vector β in the regres-

sion problem.

If λ is bigger, we get more sparsity (more βi = 0)

R package: glmnet(X,Y, alpha = 1)
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Graphical Lasso = G-Lasso

In graphical models there is, in principle, no response

variable Y to X (unsupervised learning).

We seek to have zeros in the precision matrix K.

2 methods of Graphical Lasso exist:

• by Penalized Log-Likelihood (Friedman 2008)

• by Regression LASSO for each Xi as response

(Meinshausen, Bühlmann 2006)
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2.1. Graphical Lasso via Penalized Log-Likelihood

(d’Aspremont, Banerjee, Ghaoui 2008,

Friedman, Hastie, Tibshirani 2008)

Regression LASSO has an equivalent formulation via

maximization of the L1-Penalized Log-Likelihood. One

exploits such formulation for a method of Graphical

Lasso.

The likelihood (density) function of the sample

X(1), . . . , X(n):

f(x(1), . . . , x(n);K) = (2π)−pn/2(detK)n/2 exp(−n2〈Σemp,K〉)
where Σemp = 1

n

∑n
i=1(x(i) − x̄)(x(i) − x̄)T

(this will be proved in a further lecture)
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The log-likelihood function

log f(x(1), . . . , x(n);K) = c+
n

2
log detK −

n

2
〈Σemp,K〉)

Graphical Lasso via Penalized Log-Likelihood:
K̂ = arg maxK∈Sym+(p)[log detK − 〈Σemp,K〉 − λ

∑
l 6=m |klm|]

where λ > 0, Σemp= sample covariance matrix.

The penalty is proportional to the L1-norm of the off-
diagonal entries of the precision matrix K.

Fact.The resulting optimal precision matrix K̂ has spar-
sity in off-diagonal terms klm.

R package: glasso
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2.2 Regression LASSO for each Xi as response

variable to all other Xî (”‘Neighborhood-Based Likelihood”)

(Meinshausen, Bühlmann 2006)

Main Idea. In the linear regression Xi =
∑
j 6=i βijXj+εi

we estimate the coefficients βij by

βij =
Cov(Xi, Xj|XV \{i,j})
V ar(Xj|XV \{i,j})

=
−κij
κii

,

(Choose Xi, Xj, treat all other variables as fixed,

use ΣXi,Xj|XV \{i,j}
= K−1

{i,j} = 1
detK{i,j}

(
κjj −κij
−κij κii

)
.)

Conclusion: βij = 0 iff κij = 0.
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Method of Meinshausen, Bühlmann:

(i) Apply LASSO to each Xi in turn as the response

(apply usual LASSO p times)

(ii) Decide i 6∼ j in the graph G if both βij = 0 = βji.
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COMPUTER PROBLEM

5-9 March, 2020

Apply 3 Methods (Method K̃emp and 2 methods of

graphical Lasso) for the famous Frets’ Heads data (1921):

The head dimensions:

length Li and breadth Bi, i = 1,2

of 25 pairs of first and second sons were measured.

Thus we have n = 25 and p = 4.

Frets’ Heads Data is available in R:

library(boot)

frets
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