EXAM Graphical Models. TIME: 45 min.

ALTERNATIVE WAY OF GETTING THE FINAL NOTE
WITHOUT COMPUTER LAB REPORT:
PRESENT EXERCISES FROM PARTS 3,4,5 + EXAM BY EMAIL

Let X be a centered Gaussian vector of dimension 3 given by X = (Xl, X, Xg)T ~ N(0,Xx)
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with covariance matrix Xx = [ 1 1 1] and precision matrix Kx = | -1 3 -1
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1. What is the relation between matrices >y and Kx?
2. Are there independent components X;? If yes, which ones?

3. Are there components X; conditionally independent, knowing the others? If yes, which ones?
What can we deduce on the prediction of X7, if one knows X5 and X357

4. Draw the dependance graph G of X.
5. Determine the marginal law of (Xy, X3)7.
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6. Determine the conditional law of (X5, X3)"|X; = u and the conditional correlation p X, Xa| X1 = u
7. One knows that the random vector Y belongs to the graphical Gaussian model governed by the graph
G. One does not know the covariance matrix >y of Y.

We have a sample of size n = 5 of ¥ and one computes the sample (empirical) covariance matrix
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Give the ML Estimator (MLE) ¥y and the MLE of the precision matrix Ky of Y.
8. Is the graph G complete? Decomposable? Give its decomposition into cliques.

9. Give an example of a non-decomposable graph.

Some formulas from the lectures. Let X be a Gaussian vector N (&, %) in RY with ¥ invertible.

One partitions X = ())gA into sub-vectors X, € R" and Xp € R?, where r + s =d.
B
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One partitions & = <€B , B = Ss Spp )’ K= Kna Knp into blocs cxr sxs)

The conditional law X 4| (Xp = x5) ~ N({a,2ayB) where

€A\B =&4+ EABzng(CL'B — fB) and 2A|B = Kgfl‘
The conditional correlation pj,\(im} = —Fim = — fim__|
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Maximum Likelihood Equation : mg(K ') = mg(%), where % is the sample covariance.



