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Streszczenie

Ta rozprawa doktorska koncentruje się na równaniach agregacji-dyfuzji (ADE), które
modelują rozkład gęstości obiektów (cząstek, etc.) w czasie, pod wpływem nielokalnych
interakcji oraz nieliniowej dyfuzji. Równania te opisują różne zjawiska fizyczne i bi-
ologiczne, m.in.: przyciąganie grawitacyjne, chemotaksję oraz zachowanie tłumu. In-
terpretowane są jako ciągły opis interakcji między cząstkami, gdzie każda cząstka ma
przyporządkowane położenie i pęd. Rozprawa ta dzieli się na trzy części.

W pierwszej części rozwijana jest teoria w przestrzeni Lp dla równań ADE z jądrem
(opisującym interakcje) w postaci funkcji potęgowej. Rozwiązania tego zagadnienia są
globalne w czasie oraz ograniczone, ale wykazują koncentrację dla dostatecznie małej
dyfuzji tzn. można zaobserwować istotną akumulację części rozwiązania w małym
otoczeniu punktu zero. Może to być interpretowane jako jakościowy opis osobliwości
powstającej przy braku dyfuzji. Główne narzędzia zastosowane w tej części opier-
ają się na oszacowaniach a priori, metodzie momentów oraz uśrednianiu rozwiązania
w czasie poprzez całkowanie.

Druga część rozprawy dotyczy badania istnienia rozwiązań stacjonarnych równań
ADE, z ogólniejszym jądrem potęgowym, metodą punktu stałego. Wyprowadzono
jawne wzory na niektóre z tych rozwiązań, które bywają cenne w kontekście wery-
fikacji ogólnych metod numerycznych. Co więcej, udało się wyprowadzić jawny wzór
na rozwiązanie zmiennego znaku w jednym wymiarze, posiłkując się wynikami doty-
czącymi równania Burgersa.

Tematem ostatniej części jest paraboliczno-eliptyczny układ równań różniczkowych,
rozważany w całej przestrzeni, znany również jako model Kellera-Segela, który mod-
eluje rozkład gęstości komórek oraz ich interakcje poprzez stężenie chemoatraktantu.
W tym problemie funkcje stałe są rozwiązaniami stacjonarnymi. Udało się rozwinąć
teorię lokalnych w czasie rozwiązań w jednorodnie lokalnych przestrzeniach Lebesgue’a,
wraz z opisem dynamiki rozwiązań dla dużych wartości czasu. Niektóre stałe rozwiąza-
nia stacjonarne są stabilne. Z drugiej strony, powyżej pewnej wartości krytycznej,
stałe stany stacjonarne wykazują niestabilność.

ix
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Abstract

This doctoral dissertation focuses on aggregation-diffusion equations (ADE), which
model the behavior of particle density under non-local interactions and nonlinear
diffusion. These equations describe various physical and biological phenomena, in-
cluding, e.g., gravitational attraction, chemotaxis and swarming. Modeling through
ADE captures long-range attraction and short-range repulsion, serving as a contin-
uum description of particle interactions derived from ordinary differential equations.
This dissertation is divided into three parts.

In the first part, an Lp-theory is developed for an ADE with a power-law inter-
action kernel. Global-in-time and globally bounded solutions exhibit a concentration
phenomenon for small diffusion coefficients, resulting in significant mass accumula-
tion in small neighborhoods around the origin. This can be viewed as a qualitative
description of the singularity that forms in the absence of diffusion. The main cal-
culations are based on a priori and moment estimates, and time averaging through
integration. Properties of the solutions for large times are also described.

The second part is devoted to discussing the application of fixed-point methods to
establish the existence of steady states for certain ADE with a more general power-
law kernel. Moreover, explicit formulas for some stationary solutions are derived,
which are valuable for verifying general numerical methods. Finally, the existence of
a sign-changing solution in one dimension is demonstrated, utilizing results from the
theory of the Burgers’ equation.

The last part analyzes a minimal parabolic-elliptic Keller-Segel system modeling
cell density and interactions through chemoattractant concentration. In this system,
constant functions serve as steady states. A framework is developed for local-in-
time solutions in the uniformly local Lebesgue spaces, alongside an analysis of the
long-term dynamics of these solutions. Certain constant stationary solutions are
stable, indicating that small perturbations can lead to global-in-time convergence.
Conversely, beyond a critical parameter value, these constant steady states exhibit
instability.

xi
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Notation

General notation

i) N = {0, 1, 2, ...}, N+ = {1, 2, 3, ...} - natural numbers.

ii) Rd - d-dimensional Euclidean space, endowed with the norm |x| =
√
x21 + ...+ x2d.

iii) BR - ball in Rd centered at x0 = 0, with radius R > 0. We write BR(x0) when
x0 ̸= 0.

iv) σd - area of the unit sphere Sd−1 in Rd, σd = 2πd/2/Γ(d/2).

v) ∂α - higher order partial derivative, where α - multi-index.

vi) C - generic constant (sometimes indexed), which may vary from line to line. We
write C = C(α, β, γ, ...) when we want to emphasize the dependence of C on
such parameters.

Function spaces

i) Lp(Rd) - Lebesgue space with a standard norm ∥ · ∥p.

ii) L1
(
Rd, w dx

)
- the w-weighted L1 space, where w : Rd → [a,+∞), a > 0, is

a measurable function, endowed with the norm

∥v∥L1(Rd,w dx) =

∫
Rd

|v(x)|w(x) dx.

iii) Cn(Rd) - Banach space of n-times continuously differentiable functions on Rd.

iv) C∞
c (Rd) - space of infinitely differentiable functions on Rd with compact support.

v) Any other norm in a Banach space Y is denoted by ∥ · ∥Y .

xv
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Additional notation and definitions

i) For two integrable functions f, g, we define their convolution as

f ∗ g(x) =
∫
Rd

f(x− y)g(y) dy.

ii) M - mass of the function v ∈ L1(Rd), defined by

M =

∫
Rd

v(x) dx.

iii) Heat semigroup is given by the formula

(
et∆f

)
(x) = (4πt)−

d
2

∫
Rd

e−
|x−y|2

4t f(y) dy.

iv) Function f is radial (radially symmetric) if and only if it is invariant under all
rotations leaving the origin fixed, i.e., f(Sx) = f(x) for all S ∈ SO(d), where
SO(d) is the special orthogonal group of Rd (orthogonal matrices satisfying
detS = 1).
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Chapter 1

Introduction

1.1 Aggregation-diffusion equations (ADE)

In this doctoral dissertation, we consider a class of partial differential equations,
known as aggregation-diffusion equations, in the following form,

ut −∆um = ∇ · (u∇K ∗ u), t > 0, x ∈ Rd, (1.1)

where d ≥ 1 and m ≥ 1. Function u = u(t, x) represents the density of particles,
which are subject to the non-local interactions, described by the convolution with
a symmetric interaction potential K : Rd → R. Term ∆um is the nonlinear diffusion,
which expresses dissipation of the particles. Throughout this work, we will refer to
these equations as ADE, and we mention that they can sometimes be found in the
literature under other names, e.g., drift-diffusion equations.

These models are used to describe behavior of the particles and their pairwise
interactions in many life phenomena (e.g., physical and biological), both on the mi-
croscopic and macroscopic level, such as astrophysics (mean-field models of gravita-
tionally attracted particles [36, 37]), chemotaxis (movement of microorganisms caused
by chemical stimuli [57, 81]), angiogenesis, herding of animal populations, motion of
human crowds or bacteria orientation [31]. This behavior is largely driven by long-
range attractive forces, due to, e.g., chemical or social interactions, and short range
repulsion, mainly due to dissipation. In some cases, equations of the form (1.1) arise
from the modeling particles interacting with each other, defined by the system of
ODEs, as a continuum description of their behavior, when number of particles be-
comes large [27, 28].

In this chapter, we provide a literature review on the following topics. In Chap-
ter 2, we describe behavior of solutions to equation (1.1) with a small diffusion co-
efficient. Chapter 3 is devoted to the special solutions (e.g., steady states) to prob-

1
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2 Chapter 1. Introduction

lem (1.1) and Chapter 4 provides an analysis of the solutions to a chemotaxis model
in the uniformly local Lp spaces. Existing results in these topics are covered in the
following sections, respectively, and references therein. For a general description of
ADE, we refer the reader to the book [29], and for the introduction to techniques
used in their analysis, see [45].

1.2 Approximation of blow-up

In Chapter 2, we develop a systematic Lp-theory on the following ADE,

ut − ε∆u = ∇ · (u∇Wk ∗ u), t > 0, x ∈ Rd, (1.2)

where the effect of particle interaction is captured through the convolution with the
so-called power-law interaction kernel, denoted as Wk, defined by

Wk(x) =
|x|k

k
, (1.3)

where k ∈ (0, 1). We introduce the diffusion coefficient ε > 0, where we are particu-
larly interested in the behavior of solutions when ε is sufficiently small.

The main result reported in Chapter 2 states, that solutions to problem (1.2) are
global-in-time and bounded in Lp-norm, but they exhibit a concentration phenomenon
for a small diffusion coefficient. Namely, under suitable assumptions on the initial
condition, small neighborhoods of the origin carry an uniform portion of the total
mass of the corresponding solution. We can interpret this result as a qualitative
description of the singularity formed in equation (1.2) without diffusion (more widely
known as aggregation equation, see below), when blow-up occurs, see Remark 2.14.
This result is an extension of the idea described in paper [13], where equation (1.2)
with |x| was studied.

For a better understanding of our result, we present an overview of the results for
equation (1.2) with fixed ε and k > −d. For k < 0, solutions either exist globally
or blow up in finite time, depending on the mass and concentration of the initial
condition. The same behavior is present in the critical case k = 0, where power-
law kernel is defined as Wk(x) = log |x|. Then equation (1.2) exhibits global-in-time
existence/blow-up dichotomy only in terms of the mass of the solution, where the
essential example of such equation is the classical Keller–Segel chemotaxis model in
R2, described in Section 1.4. For a general description of ADE with such behavior,
we refer the reader to articles [16, 18, 55, 62] and book [29], with references therein.

18:68132



1.2. Approximation of blow-up 3

In the case k = 1, we refer mainly to the recent paper [13] and references therein,
where authors consider equation (1.2) with interaction kernels, which are radially
symmetric and behave like |x| only locally around the origin. For such kernels, they
consider solutions which are globally bounded in time and prove that they exhibit
mass concentration phenomenon around the origin when ε is small.

For k > 1, solutions to problem (1.2) are global-in-time [35], and as far we are
concerned, there are no meaningful results regarding description of the behavior of
solutions when diffusivity is small. We expect that results obtained in this dissertation
can be extended to range k ∈ (1, 2) (see Remark 2.21) and kernels behaving like |x|k

only locally around the origin.
On the other hand, for the aggregation equations, i.e., ADE without dissipation,

ut = ∇ · (u∇K ∗ u), t > 0, x ∈ Rd, (1.4)

we refer to the series of works by Bertozzi et al. [8, 9, 10, 11]. In general, regularity
of kernel is essential for the global-in-time existence. If K is at least a C2-function,
which covers the case k ≥ 2, then there is no finite time blow-up. Nevertheless, for
some initial conditions one can expect blow-up in infinite time [8]. For 2− d ≤ k < 2

it is known, that solution cease to exist in finite time at least for bounded, compactly
supported initial data [11]. We note, that solution in the moment of blow-up is
a Dirac delta function (see, e.g., [9, 25]), and this is consistent with our result (see
Remark 2.14).

Proof of concentration is based on the technique described in the work [13], but
these results where in general inspired by the methodology arising from considerations
in [17, 21, 54]. In these results, one can observe techniques considering moment and
a priori estimates, along with averaging the solution in time through integration.

In the end of Chapter 2, we consider potential convergence of solutions with fixed
ε > 0 to steady state when t → +∞, by analysing suitable moment of the solution.
For the references on the existence of stationary solutions, we refer to Section 1.3.
Here we recall only paper [20], in which authors proved convergence to a steady
state when k ≥ 2, studying the dissipation of the Wasserstein distance between the
solution and the steady state. We note that convexity of the kernel was crucial in
their analysis.

Chapter 2 is constructed as follows. In Sections 2.1-2.3 we construct local and
global-in-time solutions to problem (1.2), Section 2.4 is devoted to the concentration
phenomenon for small ε and in Section 2.5 we describe behavior of solutions for large
t > 0.

19:22782



4 Chapter 1. Introduction

1.3 Special solutions to ADE

Chapter 3 is dedicated to examining an alternative method for demonstrating the
existence of steady states for the problem

ut −∆um = ∇ · (u∇Wk ∗ u), t > 0, x ∈ Rd, (1.5)

where Wk defined in (1.3) with k > 0, as well as deriving explicit formula for some
of these solutions. Furthermore, we discuss possible existence of self-similar sign-
changing solutions to this problem in one-dimension, based on the solution to the
Burgers’ equation.

Existence of steady states to problem (1.5) is well-known for a wide range of
parameters d ≥ 1, k > −d and m ≥ 1 [4, 30, 34, 35, 26, 67, 66], where differences
in reasoning depend significantly on either the parameter m or the properties of the
kernel Wk (e.g., convexity, singularity). As to the properties of these solutions, they
are non-negative, radially decreasing and compactly supported, if m > 1. Uniqueness
for fixed mass is known only in several cases [23, 58, 65].

The main idea behind these results comes from the observation, that stationary
solutions to problem (1.5) are equivalent to the minimizers of the following free energy
functional

E[u] =
1

m− 1

∫
Rd

um dx+
1

2

∫
Rd

u(Wk ∗ u) dx,

where for m = 1 we replace um with u log u. This functional can be interpreted as
a gradient flow with respect to the Wasserstein metric on the space of probability
measures with finite second moment. Comparison of the scaling of the two terms in
the integral, depending on m and k, suggests considering three distinct regimes for the
behavior of the solutions, separated by the critical diffusion exponent mc = 1− k/d.
Existence of minimizers is considered only when m > mc in the so-called diffusion
dominated regime, where existence of global-in-time solutions is well-known [5, 6, 18,
75, 82]. One would expect convergence of these solutions to the steady states, but
this is known only in a few cases [20, 33, 41].

In Section 3.2, we consider a stationary version of equation (1.5),

∆um +∇ · (u∇(Wk ∗ u)) = 0, (1.6)

which, under certain assumptions, can be transformed into a fixed-point equation,
being a novel approach compared to the previously applied method. In the particular
case m = 1 and k = 2, we prove that either Banach or Schauder fixed-point theorem

20:81940



1.4. Chemotaxismodel in theuniformly localLp spaces 5

cannot be applied in this setting, but the possible use of other methods to solve this
problem remains of interest to us.

During our study on this topic, we were able to derive explicit formulae in several
cases. Moreover, equation (1.6), with some additional assumptions on u, is equivalent
to the nonlinear Fredholm integral equation of the second kind, for which direct meth-
ods of solving are well known (see, e.g., [78]). Explicit solutions can be particularly
useful for verifying the accuracy of numerical methods used in solving problem (1.5)
(see, e.g., [24]). In the Appendix A, we attach the code for numerical approximation
of some of these steady states.

At the end of Chapter 3, we derive a sign-changing solution, which follows from
the equivalence of the viscous Burgers’ equation and problem (1.5) with parameters
d = m = k = 1. Sign-changing solutions and their properties have been studied in
certain problems (see, e.g., [53]). The equations we consider primarily model physical
phenomena, where the assumption of non-negativity is relevant, thus the existence of
partially negative solutions is often deemed non-physical. Nevertheless, they can still
be of interest from a mathematical perspective, e.g., in the study of the stability of
steady states, where zero mass function can be considered as perturbation [56].

Considering problem (1.5) with m = 1, we suspect that one can generalize the
sign-changing solution obtained in Section 3.3 to full range k > 0 at least for d = 1,
analogously as steady states for this problem display a continuous dependence on the
parameter k. For this reason, it can be crucial to understand the properties of this
solution, i.e., scaling and derivation from Burgers’ equation, along with the Hopf-Cole
transform [39, 49].

1.4 Chemotaxis model in the uniformly localLp spaces

In this section, we present a literature review from the paper [42] concerning a chemo-
taxis model in the uniformly local Lp spaces, of which the author of this dissertation
is a co-author. In Chapter 4 one can find an overview of the results obtained in this
paper and detailed description of the author’s contribution to this publication (see
Section 4.2).

There are several mathematical works on the chemotaxis model introduced by
Keller and Segel [57]. Here, we refer the reader only to the monographs [12, 81] and
the reviews [7, 48, 51] for a discussion of those mathematical results as well as for
additional references.

21:53800



6 Chapter 1. Introduction

We consider the following minimal parabolic-elliptic Keller-Segel system

ut −∆u+∇ · (u∇ψ) = 0, −∆ψ + ψ = u, t > 0, x ∈ Rd, (1.7)

where u = u(t, x) denotes the density of cells and ψ = ψ(t, x) is a concentration of the
chemoattractant – a substance that is responsible for the attraction of cells. In these
equations all constant parameters are equal to one for simplicity of the exposition.
System (1.7) was already studied in the whole space e.g., in the papers [14, 15, 40, 54,
55, 60, 61, 72], where several results either on a blow-up or on a large time behavior
of solutions have been obtained.

For each constant A ∈ R, the couple (u, ψ) = (A,A) is a stationary solution to
system (1.7) and, since the domain is unbounded, it does not belong to any Lebesgue
Lp space with p ∈ [1,∞). Thus, in Theorem 4.2, we develop a mathematical theory
concerning local-in-time solutions to the initial value problem for system (1.7) in the
uniformly local Lebesgue spaces Lp

uloc(Rd).
Then, we consider a constant stationary solution (u, ψ) = (A,A) with A ∈ [0, 1)

and we show in Theorem 4.4 that a small Lp-perturbation of such an initial datum
gives a global-in-time solution which converges toward (A,A) as t → ∞. On the
other hand, we prove in Theorem 4.5 that the constant solution is unstable in the
Lyapunov sense if A > 1.

A stability of constant solutions to chemotaxis models has been already studied in
bounded domains. For example, the paper [46] describes dynamics near an unstable
constant solution to the classical parabolic-parabolic Keller-Segel model in a bounded
domain and obtained results are interpreted as an early pattern formation.

Another work [80] is devoted to the system

ut −∆u+∇ · (u∇ψ) = 0, −∆ψ + µ = u, µ =
1

|BR|

∫
BR

u dx,

in the ball of radius R > 0 with Neumann boundary condition. Here, constants are
also stationary solutions and it is shown that there exists a critical number mc such
that at mass levels above mc the constant steady states are extremely unstable and
blow-up can occur. On the other hand, for m < mc, there exist infinitely many radial
solutions with a mass equal to m.

Since our publication [42] on this topic, four publications citing it have been
released. Worth mentioning is the work [76], where more regular solutions to prob-
lem (1.7) have been constructed in a subspace of space Lp

uloc(Rd).
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Chapter 2

Approximation of blow-up

2.1 Statement of the problem

The goal of this chapter is to study existence and properties of solutions to the
following initial value problem{

ut − ε∆u = ∇ · (u∇Wk ∗ u), t > 0, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd,
(2.1)

where d ≥ 1, ε > 0 is a constant diffusion coefficient and Wk is the power-law
interaction kernel defined by

Wk(x) =
|x|k

k
, x ∈ Rd, k ∈ (0, 1).

The initial condition satisfies u0 ∈ L1(Rd) ∩ Lp(Rd), where p > 1.

2.2 Local-in-time solutions

In this section, for the sake of clarity, we fix coefficient ε = 1, thus we consider the
following simplified problem{

ut −∆u = ∇ · (u∇Wk ∗ u), t > 0, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd.
(2.2)

Notice that if function u is a solution to problem (2.2) then function uε(t, x) =

εu(εt, x) is a solution to problem (2.1).
We begin with a theorem on the local-in-time mild solutions to problem (2.2), i.e.,

solutions to the integral equation

u(t) = et∆u0 +

∫ t

0

∇e(t−s)∆ · (u(s)∇Wk ∗ u(s)) ds. (2.3)

7
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8 Chapter 2. Approximation of blow-up

Notice that heat semigroup commutes with the divergence operator ∇·, which can
be justified by applying the Fourier transform. This relation is usually not valid in
a bounded domain.

Proposition 2.1. Let d ≥ 1 and k ∈ (0, 1). For every p ∈ [2d/(2d + k − 1),+∞]

and u0 ∈ L1(Rd) ∩ Lp(Rd) there exists T > 0 and a unique mild solution u ∈
C
(
[0, T ], L1(Rd)∩Lp(Rd)

)
of equation (2.3). Moreover, this solution has the following

properties.

(i) The solution u is non-negative for a non-negative initial datum u0.

(ii) The solution u is radially symmetric for a radial initial datum u0.

This proposition is proved by the contraction mapping theorem (see Proposi-
tion 2.5) applied to an integral equation (2.3) and requires some results which we are
going to gather and prove below. Moreover, solution obtained by this proposition is
in fact sufficiently regular to be a classical solution to problem (2.2), see Remark 2.6.

We begin by recalling well-known properties of the heat semigroup {et∆}t≥0 acting
on the Lp-spaces.

Lemma 2.2 (Heat semigroup estimates). Let d ≥ 1, 1 ≤ q ≤ p ≤ +∞, v ∈ Lq(Rd)

and C = C(d, p, q), then

∥et∆v∥p ≤ Ct−
d
2(

1
q
− 1

p)∥v∥q and ∥∇et∆v∥p ≤ Ct−
d
2(

1
q
− 1

p)−
1
2∥v∥q

for all t > 0.

Next we recall some properties of the convolution with a singular function ∇Wk.

Lemma 2.3 (See e.g., [50, Theorem 4.5.3]). Let d ≥ 1, k ∈ (0, 1) and 1 < p < q <

+∞. Then there exists a number Ck,p > 0 such that

∥∇Wk ∗ v∥q ≤ Ck,p∥v∥p, where
1

p
+

1− k

d
= 1 +

1

q

for all v ∈ Lp(Rd).

Lemma 2.4 (See e.g., [50, Lemma 4.5.4]). Let d ≥ 1 and k ∈ (0, 1). Then there
exists a number Ck > 0 such that

∥∇Wk ∗ v∥∞ ≤ Ck∥v∥
1− 1−k

d
1 ∥v∥

1−k
d∞

for all v ∈ L1(Rd) ∩ L∞(Rd).
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2.2. Local-in-time solutions 9

We obtain a solution to integral equation (2.3) from the Banach fixed-point the-
orem formulated in the following way.

Proposition 2.5 (See e.g., [63, Theorem 13.2]). Let E be a Banach space and let
B = B(·, ·) : E × E → E be a bounded bilinear form with an estimate

∥B(u, v)∥E ≤ CB∥u∥E∥v∥E

for some CB > 0 independent of u, v ∈ E. Assume that δ ∈ (0, 1/(4CB)). If ∥y0∥E ≤
δ, then equation

u = y0 +B(u, u)

has a solution satisfying ∥u∥E ≤ 2δ. This solution is unique in the set {u ∈ E :

∥u∥E ≤ 2δ} and stable in the following sense: if y1, y2 ∈ E satisfy ∥y1∥E ≤ δ and
∥y2∥E ≤ δ, then for the corresponding solutions u1, u2 ∈ E we have

∥u1 − u2∥E ≤ C∥y1 − y2∥E,

where C > 0 is independent of u1 and u2.

It is easy to see that within these assumptions, F (u) = y0+B(u, u) is a contraction
operator on the set {u ∈ X : ∥u∥X ≤ 2δ}.

Proof of Proposition 2.1. For T > 0 we introduce X = C
(
[0, T ], L1(Rd) ∩ Lp(Rd)

)
which is a Banach space with the norm ∥u∥X = supt∈[0,T ](∥u(t)∥1+∥u(t)∥p). In order
to apply Proposition 2.5, it suffices to estimate the bilinear form

B(u, v)(t) =

∫ t

0

∇e(t−s)∆ · (u(s)∇Wk ∗ v(s)) ds.

Let u, v ∈ X. Using the heat semigroup estimates from Lemma 2.2, Hölder
inequality and Lemma 2.3 we have

∥B(u, v)(t)∥1 ≤
∫ t

0

∥∇e(t−s)∆ · (u(s)∇Wk ∗ v(s)) ∥1 ds

≤ C

∫ t

0

(t− s)−
1
2∥u(s)∇Wk ∗ v(s)∥1 ds

≤ C

∫ t

0

(t− s)−
1
2∥u(s)∥q1∥∇Wk ∗ v(s)∥q2 ds

≤ C

∫ t

0

(t− s)−
1
2∥u(s)∥q1∥v(s)∥q3 ds,

(2.4)
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10 Chapter 2. Approximation of blow-up

where 1/q1 + 1/q2 = 1 with q1, q2 ∈ [1,+∞] and

1

q3
+

1− k

d
= 1 +

1

q2
, 1 < q3 < q2 < +∞. (2.5)

Moreover, by the standard interpolation of norms,

∥u(s)∥q1 ≤ C∥u(s)∥α1∥u(s)∥1−α
p ≤ C (∥u(s)∥1 + ∥u(s)∥p) ,

and analogously for ∥v(s)∥q3 , we have conditions

1

q1
= α +

1

p
(1− α), 0 ≤ α ≤ 1 and

1

q3
= β +

1

p
(1− β), 0 ≤ β ≤ 1. (2.6)

Combining all the identities we obtain a function

p(α, β) =
d(2− α− β)

d(2− α− β) + k − 1

satisfying p(α, β) > 0 for α+β < 2−(1−k)/d. Moreover, it is strictly increasing in this
domain up to +∞ for both arguments and attains its minimum p1 = 2d/(2d+ k− 1)

at α = β = 0. Thus, for any p∗ ∈ [p1,+∞) there exists a solution (α, β) to equation
p(α, β) = p∗ such that

α + β = 2− (1− k)p∗/(d(p∗ − 1)). (2.7)

Exponents qi, i ∈ {1, 2, 3}, corresponding to p∗ satisfy all the assumptions if

β > 1− (1− k)p∗

d(p∗ − 1)
, (2.8)

where for such β we can always find α satisfying equation (2.7).
Putting p = +∞ in conditions (2.6) one can choose adequate exponents qi satis-

fying all the assumptions, as long as β > 1 − (1 − k)/d. Taking supremum of both
sides of inequality (2.4) and integrating we obtain

sup
t∈[0,T ]

∥B(u, v)(t)∥1 ≤ CT
1
2∥u∥X∥v∥X ,

where C > 0 is a constant independent of T .
Now we estimate p-norm of the bilinear form with p < +∞. In the case d = 1 we

have

∥B(u, v)(t)∥p ≤ C

∫ t

0

(t− s)−
1
2(1−

1
p)−

1
2∥u(s)W ′

k ∗ v(s)∥1 ds (2.9)
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2.2. Local-in-time solutions 11

and estimates for the nonlinear term are as previously. Integral in time is convergent
for all p > 0, therefore we have

sup
t∈[0,T ]

∥B(u, v)(t)∥p ≤ CT
1
2p∥u∥X∥v∥X .

We assume d ≥ 2 and proceed with a more general approach,

∥B(u, v)(t)∥p ≤ C

∫ t

0

(t− s)−
d
2(

1
q
− 1

p)−
1
2∥u(s)∥q1∥v(s)∥q3 ds, (2.10)

where
1 ≤ q ≤ p ≤ +∞,

1

q1
+

1

q2
=

1

q
with q1, q2 ∈ [1,+∞],

along with condition (2.5). By interpolation of norms we obtain the same relation as
described in expression (2.6) and integral in time is convergent when q > pd/(p+ d).
Notice that taking q = 1 leads to convergence only for p < d/(d − 1) thus for p ∈
[p1, d/(d− 1)) we have

sup
t∈[0,T ]

∥B(u, v)(t)∥p ≤ CT− d
2(1−

1
p)+

1
2∥u∥X∥v∥X .

Now assume q > 1. Once again, combining all the identities, we obtain the
following function

p(α, β; q) =
dq(2− α− β)

dq(1− α− β) + d+ q(k − 1)
,

where q > 1 is a parameter. We consider function p on the non-empty set

D =
{
(α, β) ∈ [0, 1]2 : α + β < 1 + 1/q − (1− k)/d

}
.

Then for all (α, β) ∈ D we have p(α, β; q) > 0, p is strictly increasing function for each
variable, it is unbounded from above and has infimum corresponding to p(0, 0, 1) = p1.
Thus, we conclude that p(α, β; q) ∈ (p1,+∞).

Let p∗ > p1, qmax = p∗ and qmin = max{1, p∗d/(p∗ + d)}. If p∗ ≥ p2, where
p2 = d/(d + k − 1), then p∗ satisfies inequality p(0, 0; qmax) ≤ p∗. Thus, for all
q ∈ (qmin, qmax) equation p(α, β; q) = p∗ has a solution (α, β) ∈ D.

For p∗ ∈ (p1, p2) we have p(0, 0; qmax) > p∗. There exists p∗ and q ∈ (qmin, qmax)

such that equation p(α, β; q) = p∗ has no solutions. Let qm ∈ R be a solution to
equation p(0, 0, qm) = p∗. Then for all q ∈ (qmin, qm) equation p(α, β; q) = p∗ has
a solution (α, β) ∈ D.
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12 Chapter 2. Approximation of blow-up

Fix p∗ > p1, then coefficients α, β satisfy the following equation

α + β =
(k − 1) p∗

d (p∗ − 1)
+
p∗q + p∗ − 2q

(p∗ − 1) q

and exponents qi are well-defined if condition (2.8) is satisfied. Intersection of this
conditions is non-empty for some q ∈ (qmin, qmax), which concludes the argument.
After taking supremum and integration in inequality (2.10), we obtain

sup
t∈[0,T ]

∥B(u, v)(t)∥p ≤ CT− d
2(

1
q
− 1

p)+
1
2∥u∥X∥v∥X .

When p = +∞, we proceed analogously using Lemma 2.4,

∥B(u, v)(t)∥∞ ≤ C

∫ t

0

(t− s)−
1
2∥u(s)∥∞∥v(s)∥1−

1−k
d

1 ∥v(s)∥
1−k
d∞ ds, (2.11)

where by standard interpolation and integration we obtain

sup
t∈[0,T ]

∥B(u, v)(t)∥∞ ≤ CT
1
2∥u∥X∥v∥X .

By Proposition 2.5 we obtain a local-in-time solution to the integral equation (2.3)
in the space X for a sufficiently small T > 0. Uniqueness of the solution can be shown
in a standard way by estimating the difference

∥u1(t)− u2(t)∥ = ∥u1(t)− u2(t)∥1 + ∥u1(t)− u2(t)∥p

for two solutions u1, u2 with the same initial condition u0. For all p ∈ [2d/(2d+ k −
1),+∞], using estimates (2.4) and (2.9)-(2.11), we obtain inequality

∥u1(t)− u2(t)∥ ≤ C

∫ t

0

(t− s)−γ∥u1(s)− u2(s)∥ ds,

where C = C(∥u1∥X , ∥u2∥X) > 0 is independent of t ∈ (0, 1] and γ ∈ [0, 1). Notice
that this is a Volterra type inequality (see, e.g., [38, Lemma 1.2.9, p.19]), thus we can
conclude that ∥u1(t)− u2(t)∥ ≤ 0 for all t ∈ (0, 1] and in consequence, uniqueness of
the solution in the space X for sufficiently small T > 0.

We show non-negativity of the solution by a standard approach. For a non-
negative initial datum u0,n ∈ C∞

c (Rd), n ∈ N+, one can obtain a non-negative suf-
ficiently regular solution un (see, e.g., [44, 64]). By the density, we approximate
a non-negative initial condition u0 ∈ L1(Rd) ∩ Lp(Rd) with a sequence {u0,n}n∈N+ .
Using Proposition 2.5, we conclude that corresponding solution u is also approximated
by a sequence {un}n∈N+ , thus non-negative.
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2.3. Global-in-time solutions 13

Rotational invariance of the Laplace operator is well-known. Let v(x) = u(Sx),
where S ∈ SO(d). We note that Wk ∗ v(x) = Wk ∗ u(Sx), thus we conclude that
nonlinear term ∇ · (u∇Wk ∗ u) is also rotation invariant. By the uniqueness, we
obtain that solution is radially symmetric if the initial condition is so.

Remark 2.6. Let X = C
(
[0, T ], L1(Rd) ∩ Lp(Rd)

)
with p ∈ [d/(d + k − 1),+∞). If

u ∈ X, then u∇Wk∗u ∈ X and this is sufficient for a mild solution u to problem (2.3),
to be a classical solution, i.e.,

u ∈ X ∩ C
(
(0, T ],W 2,p(Rd)

)
∩ C1

(
(0, T ], Lp(Rd)

)
,

where W 2,p(Rd) is the Sobolev space. For more details on this standard result see,
e.g., [32, 68].

2.3 Global-in-time solutions

In this section, we continue with a result on the existence of the global-in-time so-
lutions to problem (2.1) with ε > 0. Local-in-time solution uε to this problem is
obtained from Proposition 2.1 and suitable substitution, and is well-defined for all
t ∈ [0, T ] with some T > 0.

Theorem 2.7. Let d ≥ 1, k ∈ (0, 1) and p ∈ [pk,+∞], where

pk =

{
max

{
2, 1

k

}
, d = 1,

2, d ≥ 2,
(2.12)

and let u0 ∈ L1(Rd)∩Lp(Rd) be a non-negative initial condition. Then, for each T > 0,
there exists a unique, non-negative, global-in-time solution uε ∈ C

(
[0, T ], L1(R) ∩

Lp(R)
)

to problem (2.1), with ε > 0 and initial condition u0. Moreover, for every
p ∈ [pk,+∞), supt≥0 ∥uε(t)∥p < +∞.

Proof of this theorem is based on Proposition 2.1 and standard a priori estimates,
see Lemma 2.9. Similar reasoning can be found in paper [18]. Before that, we show
some estimates for the solutions to problem (2.1).

Lemma 2.8 (Mass conservation property). Let d ≥ 1, k ∈ (0, 1) and p ∈ [2d/(2d +

k − 1),+∞]. Let u be a local-in-time solution to problem (2.2) corresponding to the
initial condition u0 ∈ L1(R) ∩ Lp(R). Then for all t ∈ [0, T ],∫

Rd

u(t, x) dx =

∫
Rd

u0(x) dx, (2.13)

where T > 0 follows from Proposition 2.1.
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14 Chapter 2. Approximation of blow-up

Proof. Using integral formulation (2.3) of the solution and properties of the heat
semigroup we have∫

Rd

u(t) dx =

∫
Rd

et∆u0 dx+

∫
Rd

∫ t

0

∇e(t−s)∆ · (u(s)∇Wk ∗ u(s)) ds dx =

∫
Rd

u0 dx,

where space-time integral is bounded by estimate (2.4) and in consequence equal to
zero by Fubini’s theorem.

Notice that for a non-negative initial condition, mass conservation property can
be written as ∥u(t)∥1 = ∥u0∥1 =M where

M =

∫
Rd

u0(x) dx.

Lemma 2.9. Let d ≥ 1, k ∈ (0, 1) and p ≥ pk, where pk is defined in (2.12). Let
uε be a non-negative, local-in-time solution to problem (2.1) with ε > 0 and initial
condition u0 ∈ L1(Rd) ∩ Lp(Rd). Then for all t ∈ [0, T ],

∥uε(t)∥p ≤ max
{
∥u0∥p, C(k, p)M1+ 1

η ε−
1
η

}
, (2.14)

where C(k, p) > 0, η = kp/(d(p− 1)) and T > 0 follows from Proposition 2.1.

We note that pk > 2d/(2d+ k− 1) for all d ≥ 1 and k ∈ (0, 1) thus for any p ≥ pk

there exists a local-in-time solution, according to Proposition 2.1. Moreover, recalling
Remark 2.6, pk ≥ d/(d + k − 1). Thus, integration by parts and time differentiation
of integrals involving u in the following results are fully justified. In the proof, we
simplify the notation from uε to u for the sake of clarity.

Proof. Assume p ≥ 2. By the energy method, integrating equation (2.1) by parts,
using Hölder inequality and Lemma 2.3, we obtain

1

p(p− 1)

d

dt
∥u∥pp = −ε

∫
Rd

|∇u|2up−2 dx−
∫
Rd

up−1∇u · (∇Wk ∗ u) dx

= −ε 4
p2
∥∇up/2∥22 −

2

p

∫
Rd

up/2∇up/2 · (∇Wk ∗ u) dx

≤ −ε 4
p2
∥∇up/2∥22 + Ck,p

2

p
∥up/2∥s∥∇up/2∥2∥u∥q

≤ 4

p2
∥∇up/2∥2

(
−ε∥∇up/2∥2 + Ck,p

p

2
∥up/2∥s∥u∥q

)
,

(2.15)

where
1

s
+

1

q
+

1− k

d
=

3

2
. (2.16)
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2.3. Global-in-time solutions 15

We estimate each term in inequality (2.15). From the Gagliardo-Nirenberg in-
equality and mass conservation property (2.13) we have

∥up/2∥s ≤ C∥up/2∥α2∥up/2∥1−α
1 = C∥u∥αp/2p ∥u∥(1−α)p/2

p
2

≤ C∥u∥(α+β−αβ)p/2
p M (1−α)(1−β)p/2

(2.17)

where
1

s
= 1− 1

2
α and

2

p
= 1−

(
1− 1

p

)
β, α, β ∈ [0, 1]. (2.18)

In addition

∥u∥q ≤ C∥u∥γpM1−γ, where
1

q
= 1−

(
1− 1

p

)
γ, γ ∈ [0, 1]. (2.19)

For the derivative we have

∥u∥p/2p = ∥up/2∥2 ≤ C∥∇up/2∥d/(d+2)
2 ∥up/2∥2/(d+2)

1

≤ C∥∇up/2∥d/(d+2)
2 ∥u∥βp/(d+2)

p M (1−β)p/(d+2)

and therefore
∥∇up/2∥2 ≥ CM (β−1)p/d∥u∥(d/2+1−β)p/d

p . (2.20)

Using estimates (2.17), (2.19) and (2.20) we get

1

p(p− 1)

d

dt
∥u∥pp ≤

4

p2
∥∇up/2∥2 ×

(
− εC1M

(β−1)p/d∥u∥(d/2+1−β)p/d
p

+ C2M
(1−α)(1−β)p/2+1−γ∥u∥(α+β−αβ)p/2+γ

p

)
=C∥∇up/2∥2M (1−α)(1−β)p/2+1−γ∥u∥(α+β−αβ)p/2+γ

p

×
(
− εC(k, p)M−η−1∥u∥ηp + 1

)
,

(2.21)

where η = (d/2 + 1− β)p/d− (α + β − αβ)p/2− γ = kp/(d(p− 1)). We substitute
equalities (2.18) and (2.19) into equation (2.16), and using conditions α, γ ≤ 1 we
obtain

1

2
+

1− k

d
=

1

2
α +

(
1− 1

p

)
γ ≤ 1

2
+

(
1− 1

p

)
,

thus in consequence p ≥ d/(d+ k− 1). Notice that this restriction is significant only
when d = 1.

Let us show that inequality (2.21) implies the estimate

∥u(t)∥p ≤ max
{
∥u0∥p, C(k, p)M1+ 1

η ε−
1
η

}
= U
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16 Chapter 2. Approximation of blow-up

for all t > 0. The following reasoning is analogous to the one from the paper [13,
Lemma 4.1] and we present it for the sake of completeness. For δ > 0 consider the
set

Aδ = {t ≥ 0 : ∥u(t)∥p ≤ U + δ}.

Obviously, 0 ∈ Aδ and the time continuity of u in Lp(R) ensures that

τδ = sup{t ≥ 0 : [0, t] ⊂ Aδ} ∈ (0,+∞].

Assume now for contradiction that τδ < +∞. On the one hand, the definition of
τδ implies that

∥u(τδ)∥pp = (U + δ)p ≥ ∥u(t)∥pp for all t ∈ (0, τδ), (2.22)

hence
d

dt
∥u(τδ)∥pp ≥ 0. (2.23)

On the other hand, from inequalities (2.21) and (2.22), since η > 0, we have

d

dt
∥u(τδ)∥pp ≤ C(k, p,M)∥u(τδ)∥ζp∥∇up/2(τδ)∥2

(
−∥u(τδ)∥ηpU−η + 1

)
= C(k, p,M)∥u(τδ)∥ζp∥∇up/2(τδ)∥2

(
−
(
1 +

δ

U

)η

+ 1

)
< 0,

where ζ = ζ(k, p) ≥ 0 and this contradicts (2.23). Consequently, τδ = +∞ and
Aδ = [0,+∞) for all δ > 0. Letting δ → 0 we complete the proof.

Remark 2.10. For fixed p̄ ≥ pk, such that u0 ∈ L1(Rd) ∩ Lp̄(Rd), one can inter-
polate Lp-norms of uε for all p ∈ (1, p̄) using Littlewood’s inequality. Indeed, by
estimate (2.14),

∥uε(t)∥p ≤M
p̄−p
p̄p−p∥uε(t)∥

p̄p−p̄
p̄p−p

p̄

≤M
p̄−p
p̄p−p

(
max

{
∥u0∥p̄, C(k, p̄)M1+ 1

η̄ ε−
1
η̄

}) p̄p−p̄
p̄p−p

≤ max

{
M

p̄−p
p̄p−p∥u0∥

p̄p−p̄
p̄p−p

p̄ , C(k, p̄)M1+
d(p−1)

kp ε−
d(p−1)

kp

}
≤ max

{
M, ∥u0∥p̄, C(k, p̄)M1+

d(p−1)
kp ε−

d(p−1)
kp

}
where η̄ corresponds to p̄. Notice that exponent for ε is consistent with the general
result.

32:94348



2.4. Concentration around the origin 17

Proof of Theorem 2.7. Let p < +∞. By the standard continuation argument, using
estimates from the proof of Proposition 2.1, mass conservation property (2.13) and
Lemma 2.9, we conclude that for fixed ε > 0, uε ∈ C

(
[0,+∞), L1(R) ∩ Lp(R)

)
.

For p = +∞, uε ∈ C
(
[0,+∞), L1(R)∩Lq(R)

)
for every q ∈ [pk,+∞), by the same

reasoning. By analogous calculations as in the proof of Proposition 2.1,

∥uε(t)∥∞ ≤ C1t
− d

2q ∥u0∥q + C2t
α sup
s∈(0,t)

(∥uε(s)∥1 + ∥uε(s)∥q)2 ,

for some α > 0, where numbers C1, C2 > 0 are independent of t > 0. We conclude
that uε ∈ C

(
[0, T ], L1(R) ∩ L∞(R)

)
for every T > 0.

Remark 2.11. In the proof of Theorem 2.7, we do not infer that ∥uε(t)∥∞ is uniformly
bounded in time. To improve behavior of constant C(k, p) for the limit case p = +∞,
one would consider applying the Moser–Alikakos method of estimating the Lp-norms
with p = 2n recursively (see, e.g., [1] and [52, Lemma 3.1]). We note that our results
for p = +∞ are sufficient for the later part of this work.

2.4 Concentration around the origin

Aim of this section is to study behavior at the origin of the family of radial solutions
to problem (2.1) when ε > 0 is small. Throughout this section we assume that the
radial initial condition u0 satisfies

u0 ∈ L1(Rd) ∩ L∞(Rd), u0(x) ≥ 0, x ∈ Rd and M =

∫
Rd

u0(x) dx > 0, (2.24)

and our main goal is to prove the following theorem.

Theorem 2.12 (Concentration of mass at the origin). Let d ≥ 1 and k ∈ (0, 1). Let
uε be a radial, non-negative, global-in-time solution to problem (2.1) with ε > 0 and
initial condition u0 satisfying assumptions (2.24). Moreover, suppose that there exists
λ > 0 such that ∫

Rd

(min {|x|, λ})2−k u0(x) dx < µkMλ2−k, (2.25)

where µk > 0 is a constant dependent only on k, see definition (2.43), below. Then
for some explicit numbers T∗ > 0, C∗ > 0, ε∗ > 0 and ν > 0, dependent only on d, k,
u0 and λ, the following inequality holds∫ T∗

0

∫
B

(νε)1/k

uε(t, x) dx dt ≥ C∗ (2.26)

for all ε ∈ (0, ε∗).
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18 Chapter 2. Approximation of blow-up

We note that in this theorem, for any ε > 0, uε is a solution obtained for the same
initial condition u0. Moreover, one can derive analogous estimates for the Lp-norms
of the solutions on ε-small balls.

Corollary 2.13. Let p ∈ [1,+∞]. Under the assumptions of Theorem 2.12 and using
the same notation, solution uε to problem (2.1) satisfies

∫ T∗

0

(∫
B

(νε)1/k

uε(t, x)
p dx

) 1
p

dt ≥ C∗∗(p)ε
− d(p−1)

kp (2.27)

for p < +∞ and ∫ T∗

0

sup
x∈B

(νε)1/k

|uε(t, x)| dt ≥ C∗∗(p)ε
− d

k ,

when p = +∞. Here, number C∗∗(p) > 0 depends on the same parameters as number
C∗ in Theorem 2.12, as well as on p.

Theorem 2.12, along with Corollary 2.13, indicate that even if the interactions
described by the kernel Wk do not lead to a formation of singularities for the solution
uε with fixed ε > 0, neither in finite nor in the infinite time (cf. Theorem 2.7), it
is possible to describe a concentration phenomena of solutions on ε-small balls with
ε > 0 sufficiently small.

Remark 2.14. Inequality (2.26) in a sense resembles property of a sequence approx-
imating the Dirac’s delta function. Indeed, for a positive v ∈ L1(B1) such that
∥v∥L1(B1) =M , we define vε(x) = ε−d/kv(x/εd/k) and note that∫

B
ε1/k

vε(x) dx =M

for every ε > 0. Moreover, vε →Mδ0 weakly in the sense of measures as ε→ 0.

Remark 2.15. The order of growth ε−d(p−1)/kp of the Lp-norms stated in inequal-
ity (2.27) is the same as in the upper estimate (2.14) with small ε > 0, thus we
conclude that it is optimal. This is a genuinely nonlinear effect, since estimates of the
Lp-norms for solutions of the heat equation wt = ε∆w are different. Indeed, it follows
from the explicit form of solutions, via the convolution with the Gauss–Weierstrass
kernel, that

∥w(t)∥p ≍ (εt)−
d(p−1)

2p ∥w(0)∥1,

where symbol ≍ denotes Hardy’s asymptotic notation.
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2.4. Concentration around the origin 19

Remark 2.16. If initial condition u0 has a finite (2− k)-moment, namely∫
Rd

|x|2−ku0(x) dx < +∞,

then there always exists λ > 0 such that condition (2.25) is fulfilled.

We describe the concentration phenomenon of radial solution u to problem (2.1)
at the origin by considering the quantity

Dλ(u)(t) = (2− k)(d− k)

∫
B3λ/2

u(t, x)

|x|k
dx, (2.28)

where scaling parameter λ > 0 is such that condition (2.25) is satisfied. The radius
of the ball follows from the definition of the cutoff function defined below in (2.29).
The following proposition states that, after time averaging, Dλ(uε) grows at least as
ε−1 when ε→ 0 and it plays a crucial role in our results.

Proposition 2.17. Let d ≥ 1 and k ∈ (0, 1). Let uε be a radial, non-negative, global-
in-time solution to problem (2.1) with ε > 0. Let initial value u0 satisfy assump-
tions (2.24), as well as condition (2.25) for some λ > 0. Then, there exist numbers
ωk > 0, Lλ > 0 and Tλ > 0, depending only on k, M and λ (see definitions (2.42)
and (2.45), below), such that∫ Tλ

0

Dλ(uε)(t)e
−ωkMt/λ2−k

dt ≥ Lλλ
2−k

ε
.

Remark 2.18. Results obtained in Theorem 2.12 and Proposition 2.17 can be gener-
alized for radial interaction kernels which behave like |x|k, k ∈ (0, 1), only around the
origin, in the same manner as it is done in the paper [13], where interaction kernels
behave locally like |x|.

During the proofs of the aforementioned results, we simplify the notation from uε

to u for the sake of clarity.

Proof. Let φ ∈ C1([0,+∞)) be a function satisfying

φ(s) =

{
s for 0 ≤ s ≤

(
1
2

)2−k
,

1 for s ≥
(
3
2

)2−k
,

(2.29)

along with 0 ≤ φ(s) ≤ min{s, 1}, 0 ≤ φ′(s) ≤ 1 and φ′′(s) ≤ 0. Note that φ′′ is not
necessarily continuous, but it is bounded. An example piecewise function

f(s) =


s, 0 ≤ s ≤ 1

2
,

−1
2

(
s− 3

2

)2
+ 1, 1

2
≤ s ≤ 3

2
,

1, s ≥ 3
2
,
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20 Chapter 2. Approximation of blow-up

meets all the requirements. Another idea is to take function φ resulting from the
following convolution, φ = ψ ∗ ρ(·/δ), where ψ(s) = min(s, 1), ρ is a mollifier and
δ > 0 is small enough.

For each λ > 0, we set

φλ(s) = φ

(( s
λ

)2−k
)

and we introduce the “truncated moment of order k”,

Iλ(t) =

∫
Rd

φλ(|x|)u(t, x) dx for all t ≥ 0, (2.30)

in contrast to the moment with a function |x| as weight, considered in e.g., [17].
Notice that

Iλ(t) ≤M for all t ≥ 0, (2.31)

by mass conservation property (2.13) and properties of function φ. Our goal is to de-
rive a differential inequality (2.41) for Iλ, see below. Thus, we multiply equation (2.1)
by φλ(|x|), and integrate the resulting identity with respect to x ∈ Rd.

Let us first show that term corresponding to diffusion in equation (2.1) satisfies
the following inequality,∫

Rd

φλ(|x|)∆u(t, x) dx ≤ Dλ(u)(t)

λ2−k
for all t ≥ 0. (2.32)

Indeed, we integrate by parts and use properties of the function φ, as well as positivity
and radial symmetry of u, to get∫

Rd

φλ(|x|)∆u(t, x) dx =− 2− k

λ2−k

∫
Rd

φ′
(
|x|2−k

λ2−k

)
x

|x|k
· ∇u(t, x) dx

=− σd
2− k

λ2−k

∫ +∞

0

φ′
(
r2−k

λ2−k

)
rd−kur(t, r) dr

=

∫ +∞

0

(
σd

(2− k)2

λ4−2k
φ′′
(
r2−k

λ2−k

)
rd+1−2k

+σd
(2− k)(d− k)

λ2−k
φ′
(
r2−k

λ2−k

)
rd−k−1

)
u(t, r) dr

− σd
(2− k)

λ2−k

[
φ′
(
r2−k

λ2−k

)
rd−ku(t, r)

]r=+∞

r=0

≤σd
(2− k)(d− k)

λ2−k

∫ 3λ/2

0

u(t, r)rd−k−1 dr =
Dλ(u)(t)

λ2−k
,

(2.33)

where we abuse the notation of function u to emphasize its radiality.
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2.4. Concentration around the origin 21

Next, we estimate the truncated moment of the nonlinear term

Jλ(t) =

∫
Rd

φλ(|x|)∇ · (u(t, x)∇Wk ∗ u(t, x)) dx.

Integrating by parts and using properties of functions Wk and φ, as well as the
symmetrization argument, we obtain

Jλ(t) =− 2− k

λ2−k

∫
Rd

u(t, x)φ′
(
|x|2−k

λ2−k

)
x

|x|k
· ∇Wk ∗ u(t, x) dx

=− k(2− k)

λ2−k

∫
Rd

∫
Rd

u(t, x)u(t, y)φ′
(
|x|2−k

λ2−k

)
x

|x|k
· x− y

|x− y|2−k
dx dy

=− k(2− k)

2λ2−k

∫
Rd

∫
Rd

u(t, x)u(t, y)Φλ(x, y) dx dy.

(2.34)

We define a function

Φλ(x, y) =

(
φ′
(
|x|2−k

λ2−k

)
x

|x|k
− φ′

(
|y|2−k

λ2−k

)
y

|y|k

)
· x− y

|x− y|2−k
(2.35)

for all (x, y) ∈ Rd × Rd \ Z, where

Z =
{
(x, y) ∈ Rd × Rd : x = 0 ∨ y = 0 ∨ x = y

}
.

For (x, y) ∈ Bλ/2 ×Bλ/2 \ Z, we observe that

Φλ(x, y) = Φ(x, y) =

(
x

|x|k
− y

|y|k

)
· x− y

|x− y|2−k
(2.36)

and we introduce the following lemma.

Lemma 2.19. Let d ≥ 1, k ∈ (0, 1) and let function Φ be defined in formula (2.36).
Then the following inequality holds,

Φ(x, y) + Φ(x,−y) ≥ 2k,

for all (x, y) ∈ Rd ×Rd \
{
(x, y) ∈ Rd × Rd : x = 0 ∨ y = 0 ∨ x− y = 0 ∨ x+ y = 0

}
.

Proof. We denote g(x, y) = Φ(x, y) + Φ(x,−y). Let d = 1 and by the following
properties of function g,

g(x, y) = g(x,−y) = g(−x, y) = g(y, x),

which follows from the symmetry of function Φ, we assume w.l.o.g. that x, y ≥ 0 and
x > y. By substitution x = ty, t > 1, we obtain a function f(t), which is strictly
increasing and satisfies limt→1+ f(t) = 2k.
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22 Chapter 2. Approximation of blow-up

For d ≥ 2, we notice that g(λx, λy) = g(x, y) for every λ > 0. Thus, we can
assume that |x| ≤ |y| and |x| = 1. Moreover, for fixed x, let S ∈ SO(d) be a rotation
such that x = Sw, where w is a unit vector of the first axis. Then g is rotation
invariant in the following sense,

g(x, y) = g(Sw, y) = g(w, S−1y),

therefore we consider only function g(w, y) for y ∈ Rd. In fact, by the definition of
w, function g can be described only by two variables y1 and |y| in the following way,

g(w, y) = g(y1, |y|) =
(
1− y1 − y1|y|−k + |y|2−k

)
(1− 2y1 + |y|2)1−k/2

+

(
1 + y1 + y1|y|−k + |y|2−k

)
(1 + 2y1 + |y|2)1−k/2

,

where |y| ≥ |y1| and (|y1|, |y|) ̸= (1, 1).
We note that g is a continuous function inside of the domain, g(−y1, |y|) =

g(y1, |y|) and lim|y|→+∞ g(y1, |y|) = 2. Lowest value of the function g can be de-
duced from the behavior on the boundary, thus we substitute y1 = |y| = t ≥ 0 to
obtain a function f(t). This function satisfies limt→1 f(t) = 2k, which happens to be
the biggest possible lower bound.

Now we introduce the quantity

Jλ,1(t) = −k(2− k)

2λ2−k

∫
Bλ/2

∫
Bλ/2

u(t, x)u(t, y)Φλ(x, y) dx dy,

which can be estimated from above using formula (2.36), symmetrization argument
and Lemma 2.19,

Jλ,1(t) = −k(2− k)

2λ2−k

∫
Bλ/2

∫
Bλ/2

u(t, x)u(t, y)Φ(x, y) dx dy,

= −k(2− k)

4λ2−k

∫
Bλ/2

∫
Bλ/2

u(t, x)u(t, y) (Φ(x, y) + Φ(x,−y)) dx dy,

≤ − k(2− k)

22−kλ2−k

∫
Bλ/2

∫
Bλ/2

u(t, x)u(t, y) dx dy.

By the mass conservation property (2.13), the inclusion(
Rd × Rd

)
\
(
Bλ/2 ×Bλ/2

)
⊂
(
Rd ×

(
Rd \Bλ/2

))
∪
((
Rd \Bλ/2

)
× Rd

)
, (2.37)

symmetry of u and inequality

1

22−k
≤ φλ(|x|) for all x ∈ Rd \Bλ/2, (2.38)
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2.4. Concentration around the origin 23

we conclude, that

Jλ,1(t) ≤ − k(2− k)

22−kλ2−k
M2 +

k(2− k)

22−kλ2−k

∫
(Rd×Rd)\(Bλ/2×Bλ/2)

u(t, x)u(t, y) dx dy

≤ − k(2− k)

22−kλ2−k
M2 +

k(2− k)

21−kλ2−k

∫
Rd

∫
Rd\Bλ/2

u(t, x)u(t, y) dx dy

= − k(2− k)

22−kλ2−k
M2 +

k(2− k)

21−kλ2−k
M22−k

∫
Rd\Bλ/2

u(t, x)

22−k
dx

≤ − k(2− k)

22−kλ2−k
M2 +

2k(2− k)

λ2−k
MIλ(t).

(2.39)

In the next step we show estimate for |Jλ(t)− Jλ,1(t)| from above, therefore we
prove the following estimate for function Φλ.

Lemma 2.20. Let d ≥ 1, k ∈ (0, 1) and let function Φλ be defined in formula (2.35)
for all λ > 0. Then there exists a constant ψk > 0, independent of λ, such that

|Φλ(x, y)| ≤ ψk

for all (x, y) ∈ Rd × Rd \ Z.

Proof. We begin by noting that Φλ(x, y) = Φ1(x/λ, y/λ), which is just rescaling of
the variables, thus we consider only function |Φ1(x, y)|. By the properties of function
φ and reverse triangle inequality, we have

lim
|x|→+∞

|Φ1(x, y)| = lim
|y|→+∞

|Φ1(x, y)| = 0.

Function |Φ1(x, y)| is continuous for all (x, y) ∈ Rd×Rd \Z, hence we check behavior
around x = y. Using Taylor expansion of φ′ (|x|2−k

)
, we obtain

lim
x→y

|Φ1(x, y)| ≈φ′ (|y|2−k
)
lim
x→y

(
x

|x|k
− y

|y|k

)
· x− y

|x− y|2−k

+ (2− k)φ′′ (|y|2−k
)
lim
x→y

∣∣∣∑d
i,j=1 xiyj(xi − yi)(xj − yj)

∣∣∣
|x|k|y|k|x− y|2−k

,

where the first limit is zero, which can be proved by methods analogous to those in
Lemma 2.19. Second limit is also zero due to the following estimate,∣∣∣∣∣

d∑
i,j=1

xiyj(xi − yi)(xj − yj)

∣∣∣∣∣ ≤ d sup
i,j≤d

{|xi|, |yj|} |x− y|2,

where this limit behaves like |x − y|k when x → y. Estimates when x = 0 or y = 0

are analogous. We conclude that non-negative, continuous and well-defined function
|Φ1(x, y)|, with finite limits at +∞, attains its maximal value on Rd ×Rd \Z, thus it
is bounded.
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24 Chapter 2. Approximation of blow-up

We combine this lemma with relations (2.37)-(2.38) to obtain

|Jλ(t)− Jλ,1(t)| =
k(2− k)

2λ2−k

∫
(Rd×Rd)\(Bλ/2×Bλ/2)

u(t, x)u(t, y) |Φλ(x, y)| dx dy

≤ k(2− k)ψk

2λ2−k

∫
(Rd×Rd)\(Bλ/2×Bλ/2)

u(t, x)u(t, y) dx dy

≤ k(2− k)ψk

λ2−k

∫
Rd

∫
Rd\Bλ/2

u(t, x)u(t, y) dx dy

≤ k(2− k)ψk

2k−2λ2−k
MIλ(t).

(2.40)

Gathering identity (2.34) along with estimates (2.32), (2.39) and (2.40), we obtain
the differential inequality

d

dt
Iλ(t) ≤

1

λ2−k

(
εDλ(u)(t)− µkωkM

2 + ωkMIλ(t)
)

(2.41)

for all t ≥ 0, where
ωk = k(2− k)22−k

(
ψk + 2k−1

)
(2.42)

and

µk =
22k−4

ψk + 2k−1
. (2.43)

This inequality can be rewritten as

d

dt

(
Iλ(t)e

−ωkMt/λ2−k
)
≤
(
εDλ(u)(t)− µkωkM

2
) e−ωkMt/λ2−k

λ2−k

and after integration with respect to time, we obtain

Iλ(T )e
−ωkMT/λ2−k − Iλ(0) ≤

ε

λ2−k

∫ T

0

Dλ(u)(t)e
−ωkMt/λ2−k

dt

− µkM
(
1− e−ωkMT/λ2−k

)
for each T > 0. Omitting term with Iλ(T ), which is non-negative, we end up with
inequality

ε

λ2−k

∫ T

0

Dλ(u)(t)e
−ωkMt/λ2−k

dt ≥ µkM
(
1− e−ωkMT/λ2−k

)
− Iλ(0). (2.44)

By the properties of function φ and assumption (2.25), we get

Iλ(0) ≤
1

λ2−k

∫
Rd

(min {|x|, λ})2−k u0(x) dx < µkM,

40:10931
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thus we can define a positive number L̄λ = µkM − Iλ(0). Now consider a function

f(T ) = µkM
(
1− e−ωkMT/λ2−k

)
− Iλ(0),

which is a RHS of inequality (2.44). It is a strictly increasing function with limit L̄λ

at +∞ and we note that

f(T0) = 0 ⇐⇒ T0 =
λ2−k

ωkM
log

(
µkM

µkM − Iλ(0)

)
> 0.

We conclude that for every Lλ ∈ (0, L̄λ) identity

f(Tλ) = Lλ (2.45)

is satisfied for some Tλ > T0, which completes the proof.

Remark 2.21. To obtain inequality (2.33), we integrate by parts twice, which in the
case d ≥ 1 and k ∈ (0, 1) does not cause any difficulties. In fact, calculations obtained
in this work are in a sense easier than in the paper [13], where in the one-dimensional
case Dλ(u)(t) = 2u(0, t), due to the lack of regularity of |x| around the origin. Possible
extension of these results to case k ∈ (1, 2) should take special care in defining quantity
Dλ(u) in the one-dimensional case.

Remark 2.22. We note that constant ψk > 0 obtained in Lemma 2.20 depends on the
choice of the cutoff function φ. Indeed, consider a family of functions

ft(s) =


s, 0 ≤ s ≤ t,

− (s+t−2)2

4(t−1)
+ 1, t ≤ s ≤ 2− t,

1, s ≥ 2− t,

for t ∈ [1/2, 1). Function ft satisfies all the assumptions for fixed t, and moreover,
∥f ′′

t ∥∞ → +∞ as t → 1. In the case d = 1, one can easily calculate maximum value
of the function |Φ1(x, y)| and see the dependence on the values of f ′′

t . In this work,
we do not consider the problem of choosing the optimal (in this sense - the smallest)
constant ψk.

Now we prove the main result of this section.

Proof of Thorem 2.12. We estimate the following integral∫ T

0

∫
B

(νε)1/k

u(t, x)

|x|k
dx dt,
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26 Chapter 2. Approximation of blow-up

where we introduce a parameter ν > 0 which value will be specified later. For an
arbitrary T > 0, using twice the Hölder inequality, we get∫ T

0

∫
B

(νε)1/k

u(t, x)

|x|k
dx dt

≤

(∫ T

0

∫
B

(νε)1/k

|x|−kα1 dx dt

) 1
α1

(∫ T

0

∫
B

(νε)1/k

u(t, x)β1 dx dt

) 1
β1

≤
(

σdT

d− kα1

(νε)d/k−α1

) 1
α1

(∫ T

0

∫
B

(νε)1/k

u(t, x)(β1−1/β2)α2 dx dt

) 1
β1α2

×

(∫ T

0

∫
B

(νε)1/k

u(t, x) dx dt

) 1
β1β2

,

where exponents α1, β1, α2, β2 ≥ 1 satisfy kα1 < d and 1/αi + 1/βi = 1, i ∈ {1, 2},
and will also be determined later.

We denote p = (β1 − 1/β2)α2 and depending on its value, we use Lp-estimates
from Lemma 2.9 or Remark 2.10 to obtain∫ T

0

∫
B

(νε)1/k

u(t, x)

|x|k
dx dt ≤

(
σdT

d− kα1

(νε)d/k−α1

) 1
α1

T
1

β1α2

(
sup

t∈[0,T ]

∥u(t)∥p

)1− 1
β1β2

×

(∫ T

0

∫
B

(νε)1/k

u(t, x) dx dt

) 1
β1β2

≤CT
1
α1

+ 1
β1α2 ν

d
kα1

−1
ε

d
kα1

−1− 1
η
+ 1

ηβ1β2

×

(∫ T

0

∫
B

(νε)1/k

u(t, x) dx dt

) 1
β1β2

,

where constant C > 0 is independent of T , ν and ε. We recall that η = kp/(d(p− 1))

and by straightforward calculation, we get coefficient ε−1 regardless of the choice of
the exponents, as long as they fulfill the assumptions. Thus, we obtain∫ T

0

∫
B

(νε)1/k

u(t, x)

|x|k
dx dt ≤ CTανβε−1

(∫ T

0

∫
B

(νε)1/k

u(t, x) dx dt

)γ

(2.46)

for some numbers α, β, γ > 0. Note that the above inequality is valid only for ε such
that 0 < ε < ε1, where ε1 is depending on d, k, p and u0, and can be calculated from
the Lp-estimates.

We recall that λ > 0 is a number such that condition (2.25) is satisfied. Thus
for a fixed ν > 0 and sufficiently small ε > 0, such that 3λ/2 > (νε)1/k, using the
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conservation of mass (2.13), we obtain∫ T

0

∫
B3λ/2\B(νε)1/k

u(t, x)

|x|k
dx dt ≤ 1

νε

∫ T

0

∫
B3λ/2\B(νε)1/k

u(t, x) dx dt ≤ MT

νε
. (2.47)

From inequalities (2.46)-(2.47), using definition (2.28) of the quantity Dλ(u), we
deduce that

ε

(2− k)(d− k)

∫ T

0

Dλ(u)(t) dt ≤
MT

ν
+ CTανβ

(∫ T

0

∫
B

(νε)1/k

u(t, x) dx dt

)γ

.

Setting T = Tλ, we can use Proposition 2.17 without the exponential term (due to
the positivity of ωk), to obtain

Lλλ
2−k

(2− k)(d− k)
− MTλ

ν
≤ CTα

λ ν
β

(∫ Tλ

0

∫
B

(νε)1/k

u(t, x) dx dt

)γ

. (2.48)

We choose number ν > 0 such that

ν >
MTλ(2− k)(d− k)

Lλλ2−k
= ν∗,

which assures that LHS of inequality (2.48) is positive. For such ν > ν∗, we calculate
second condition for ε > 0,

ε <
1

ν

(
3λ

2

)k

= ε2,

thus setting ε∗ = min{ε1, ε2}, we conclude the proof. For the sake of clarity we note
that T∗ = Tλ and number C∗ > 0 can be calculated from inequality (2.48) as long as
ν > ν∗.

We finish this section with the proof of Corollary 2.13.

Proof of Corollary 2.13. Let p ∈ [1,+∞]. By Theorem 2.12 and the Hölder inequality
with p < +∞,

C∗ ≤
∫ T∗

0

∫
B

(νε)1/k

u(t, x) dx dt

≤
(σd
d

) p−1
p

(νε)
d(p−1)

kp

∫ T∗

0

(∫
B

(νε)1/k

u(t, x)p dx

) 1
p

dt,

where constant C∗∗(p) > 0 can be calculated directly from this inequality. For p =

+∞ we proceed analogously, obtaining coefficient εd/k.
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2.5 Moment estimates

In the last section of this chapter, we fix ε = 1 in equation (2.1) and investigate long
time behavior of the solutions. Even though they are global-in-time and p-norms are
bounded from above, the aggregation effect is still relevant and radial solutions do
not tend to 0 as t→ +∞.

Theorem 2.23. Let d ≥ 1 and k ∈ (0, 1). Let u be a radial, non-negative, global-
in-time solution to problem (2.2), with radial, non-negative initial condition u0 ∈
L1
(
Rd, (1 + |x|2) dx

)
∩ L∞(Rd). Then

lim
t→+∞

∥u(t)∥p ̸= 0

for all p ∈ (1,+∞].

By the global-in-time solution u we understand u ∈ C
(
[0, T ], L1(Rd) ∩ L∞(Rd)

)
for every T > 0, in the sense of Theorem 2.7. Theorem 2.23 suggests, that there
exists a steady state to problem (2.2), but this is consistent with the results described
in Section 1.3. Before proving Theorem 2.23, we present some auxiliary results and
introduce notation for the moment of order b of solution u,

mb(t) =

∫
Rd

u(t, x)|x|b dx,

and the following lemma assures us of the existence of m2(t) for problem (2.2).

Lemma 2.24. Let d ≥ 1 and k ∈ (0, 1). Let u be a non-negative, global-in-time solu-
tion to problem (2.2), with non-negative initial condition u0 ∈ L1

(
Rd, (1+ |x|2) dx

)
∩

L∞(Rd). Then m2(t) < +∞ for all t ∈ [0, T ].

Proof. This lemma can be proved by the same reasoning as shown in [60, Lemma 3.2(i)].
It is sufficient to show that ∇Wk ∗ u ∈ L∞([0, T ], L∞(Rd)

)
, but this follows from

Lemma 2.4 and the fact that u is a global-in-time solution.

The following interpolation lemma is a direct consequence of the Hölder inequality.

Lemma 2.25. Let p1, p2 and p3 be numbers satisfying 0 ≤ p1 < p2 < p3 and let
v ∈ L1

(
Ω, (|x|p1 + |x|p3) dx

)
for some Ω ⊂ Rd. Then

∫
Ω

|v(x)||x|p2 dx ≤
(∫

Ω

|v(x)||x|p1 dx
) p3−p2

p3−p1

(∫
Ω

|v(x)||x|p3 dx
) p2−p1

p3−p1

.
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2.5. Moment estimates 29

Proof. We use the Hölder inequality ∥fg∥r ≤ ∥f∥p∥g∥q with exponents

r =

√
(p3 − p2)(p2 − p1)

p3 − p1
, p =

√
(p3 − p1)(p2 − p1)

p3 − p2
, q =

√
(p3 − p2)(p3 − p1)

p2 − p1
.

Notice that p2/r = p1/p+ p3/q, thus by substitution

f(x) = |v(x)|1/p|x|p1/p and g(x) = |v(x)|1/q|x|p3/q,

we obtain the result.

In the following results, we consider function |x − y|k for x, y ∈ Rd, thus we
intruduce few lemmas on the estimates of this function.

Lemma 2.26. Let x, y ∈ Rd. For k > 0 the following inequality holds

|x− y|k ≤ Ck

(
|x|k + |y|k

)
,

where Ck = 1 if k ∈ (0, 1] and Ck = 2k−1 if k > 1.

Lemma 2.27. Let x, y ∈ R. For k > 0 the following inequality holds

|x− y|k ≥

{
ck
(
|x|k + |y|k

)
if xy ≤ 0

0 otherwise,

where ck = 2k−1 if k ∈ (0, 1) and ck = 1 if k ≥ 1.

Proof of these results is rather standard thus we omit it, however we prove the
multidimensional version of Lemma 2.27, which is slightly different from the one-
dimensional case.

Lemma 2.28. Let x, y ∈ Rd, d ≥ 2. For k > 0 the following inequality holds

|x− y|k ≥

{
ck
(
|x|k + |y|k

)
if x · y ≤ 0

0 otherwise,

where ck = 2k/2−1 if k ∈ (0, 2) and ck = 1 if k ≥ 2.

Proof. Consider inequality

|x− y|2 = |x|2 − 2x · y + |y|2 ≥ |x|2 + |y|2 (2.49)

which is valid for x, y such that x · y ≤ 0. Taking both sides of inequality (2.49) to
the power k1 > 0 and using Lemma 2.27 we obtain

|x− y|2k1 ≥
(
|x|2 + |y|2

)k1 ≥ ck1
(
|x|2k1 + |y|2k1

)
,

where ck1 is defined as in Lemma 2.27. Taking k1 = k/2 we obtain the result.
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30 Chapter 2. Approximation of blow-up

Now, we are going to derive equation for the derivative of the second moment.

Lemma 2.29. Let d ≥ 1 and k ∈ (0, 1). Let u be a non-negative, global-in-time solu-
tion to problem (2.2), with non-negative initial condition u0 ∈ L1

(
Rd, (1+ |x|2) dx

)
∩

L∞(Rd). Then
m′

2(t) = dM − I(t) (2.50)

for all t ∈ [0, T ], where M is mass of the solution and

I(t) =

∫
Rd

∫
Rd

u(t, x)u(t, y)|x− y|k dy dx.

Proof. We follow the same reasoning as given in paper [19, Lemma 3]. We multiply
the equation in problem (2.2) by a smooth function ψε(|x|) with compact support,
that grows nicely to |x|2 as ε→ 0 and integrate on Rd. Integral∫

Rd

∇ · (u∇Wk ∗ u)ψε(|x|) dx,

after integrating by parts and using symmetrization, is equivalent to

−1

2

∫
Rd

∫
Rd

u(t, x)u(t, y) (∇ψε(|x|)−∇ψε(|y|)) · (x− y)|x− y|k−2 dy dx. (2.51)

Taking function ∇ψε(x) Lipschitz continuous with constant L ≤ 2, the integrand is
bounded for all ε > 0 by function u(t, x)u(t, y)|x − y|k, which is integrable on Rd

by Lemmas 2.26, mass conservation property (2.13), Lemma 2.24 and 2.25 for all
t ∈ [0, T ]. Thus, by the dominated convergence theorem, integral (2.51) converges to
I(t) as ε→ 0.

Before proving the main result of this section, we introduce another interpolation
lemma.

Lemma 2.30. Let p ∈ [1,+∞] and b ≥ 0. For all v ∈ L1
(
Rd, (1 + |x|b) dx

)
∩Lp(Rd)

the following inequality holds,

∥v∥1 ≤ C

(∫
Rd

|v(x)||x|b dx
)β

∥v∥1−β
p ,

where C = C(p) ≥ 2 and β = (p− 1)/(bp+ p− 1) ∈ [0, 1].

Proof. For

R =

(∫
Rd

|v(x)||x|b dx
) p

bp+p−1

∥v∥
− p

bp+p−1
p ,
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2.5. Moment estimates 31

using Hölder inequality, we obtain

∥v∥1 =
∫
|x|<R

|v(x)| dx+
∫
|x|≥R

|v(x)| dx

≤ (2R)1−1/p∥v∥p +R−b

∫
|x|/R≥1

|v(x)||x|b dx

≤ (2R)1−1/p∥v∥p +R−b

∫
Rd

|v(x)||x|b dx

≤
(
21−

1
p + 1

)(∫
Rd

|v(x)||x|b dx
) p−1

bp+p−1

∥v∥
bp

bp+p−1
p ,

where for p = +∞ exponents are valid by taking limit p→ +∞.

Proof of Theorem 2.23. We begin with showing the following inequality,

m′
2(t) ≤ dM − ckMmk(t), (2.52)

where constant ck > 0 follows from Lemma 2.27 or 2.28, depending on the dimen-
sion d ≥ 1.

We estimate integral I(t) in equation (2.50) from below,

I(t) ≥ ck

∫
Rd

∫
Rd

u(t, x)u(t, y)
(
|x|k + |y|k

)
1{x·y≤0}(x, y) dy dx,

where 1{x·y≤0} denotes indicator function. We notice that for non-negative, radial
functions v, w ∈ L1(Rd),∫

Rd

∫
Rd

v(x)w(y)1{x·y≤0}(x, y) dy dx =
1

2

(∫
Rd

v(x) dx

)(∫
Rd

w(y) dy

)
,

thus by the assumptions on u, I(t) ≥ ckMmk(t). Notice that this estimate is not
optimal due to the integration only over the half of R2d space.

We assume by contradiction that for all ε > 0 there exists T ∈ R such that for all
t > T we have ∥u(t)∥p < ε. By Lemma 2.30, for all t > T ,

mk(t) > Cε1−
1
β , (2.53)

where C > 0 is independent of t and ε. Combining inequalities (2.52) and (2.53), and
integrating from T to T + s for some s > 0, we obtain

0 ≤ m2(T + s) < m2(T ) + sM
(
d− Cε1−

1
β

)
. (2.54)

For ε sufficiently small, the coefficient of s is negative. Thus, for s sufficiently large,
the RHS of inequality (2.54) is negative, which contradicts the non-negativity of the
second moment.
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32 Chapter 2. Approximation of blow-up

Remark 2.31. By the same arguments as in the proof of Theorem 2.23, one can
conclude that limt→+∞mb(t) ̸= +∞ for all b ∈ (0, k].

Remark 2.32. We can estimate integral I(t) in equality (2.50) from above, using
Lemma 2.26, to obtain

m′
2(t) ≥ dM − 2CkMmk(t), (2.55)

where solution u is not necessarily radial. One can conclude from this inequality, that
m2(t) is bounded from below for all t ≥ 0. Indeed, using Lemma 2.25, we obtain

m′
2(t) ≥ dM − Cm2(t)

k/2

for some C > 0. We deduce, that evolution of the moment m2(t) satisfies an estimate
m2(t) ≥ y(t) for all t ≥ 0, where y(t) is a solution to the following ODE

y′(t) = 2M − Cy(t)k/2, y(0) = m2(0),

whose solution meets limt→+∞ y(t) < +∞.

Remark 2.33. Both inequalities (2.52) and (2.55) can be considered as an equivalent
of the well-known identity

m′
2(t) = 4M − M2

2π
,

derived from the two-dimensional Keller–Segel chemotaxis model. This model in fact
corresponds to the critical case k = 0 of the convolution kernel Wk.

Remark 2.34. Applying the same technique in the case k ≥ 2, assuming sufficient
regularity on u, one can obtain the following differential inequality

m′
k(t) ≤M

2
k

(
k(d+ k − 2)mk(t)

1− 2
k − kck−2

2
mk(t)

2− 2
k

)
,

from which follows mk(t) ≤ C for some number C > 0 independent of t ≥ 0.
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Chapter 3

Special solutions to ADE

3.1 Statement of the problem

This chapter is devoted to the following ADE,

ut −∆um = ∇ · (u∇Wk ∗ u), t > 0, x ∈ Rd, (3.1)

where d ≥ 1, m ≥ 1 and Wk is the power-law interaction kernel, defined by

Wk(x) =
|x|k

k
, k > 0. (3.2)

We investigate existence and properties of special solutions to problem (3.1), i.e.,
solutions with some specific qualitative properties. In the following lemma, we show
scaling of this equation.

Lemma 3.1 (Scaling property). Let d ≥ 1, m ≥ 1, k > 0, λ > 0 and let parameters
α, β, γ ∈ R satisfy the following equations,

α(2−m) = γ(d+ k) and β = 2γ + α(m− 1). (3.3)

Then equation (3.1) has scaling uλ(t, x) = λαu(λβt, λγx), i.e., if u is a solution to
equation (3.1), then uλ is so.

Proof. We calculate each term in equation (3.1) for uλ, where for derivatives we have

d

dt
uλ(t, x) = λα+βut(λ

βt, λγx) and ∆uλ(t, x)
m = λαm+2γ(∆um)(λβt, λγx).

33
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34 Chapter 3. Special solutions to ADE

For the convolution, using change of variables, we obtain

∂Wk

∂xi
∗ uλ(t, x) = λα

∫
Rd

(xi − yi)|x− y|k−2u(λβt, λγy) dy

= λα−γd

∫
Rd

(xi − λ−γzi)|x− λ−γz|k−2u(λβt, z) dz

= λα−γd−γ(k−1)

∫
Rd

(λγxi − zi)|λγx− z|k−2u(λβt, z) dz

= λα−γ(d+k−1)∂Wk

∂xi
∗ u(λβt, λγx)

(3.4)

and furthermore

∇ · (uλ(t, x)∇Wk ∗ uλ(t, x)) = λ2α−γ(d+k−2)∇ ·
(
u(λβt, λγx)∇Wk ∗ u(λβt, λγx)

)
.

Gathering all the exponents we obtain the result.

Remark 3.2 (Self-similar solution). Considering problem (3.1), a natural question
arises on the existence of the self-similar solution i.e., satisfying uλ(t, x) = u(t, x)

along with condition ∫
Rd

uλ(t, x) dx =

∫
Rd

u(t, x) dx.

For a self-similar solution to exist, parameters d, m, k have to satisfy a relation m =

1− k/d, which in literature is known as a fair competition regime [29]. A particular
problem considered in this setting is the classical parabolic-elliptic Keller-Segel model
in R2 (see, e.g., [70]).

3.2 Stationary solutions

In this section, we consider equation for the stationary solutions to problem (3.1),

∆um +∇ · (u∇Wk ∗ u) = 0, x ∈ Rd, (3.5)

where we assume that u is a positive and sufficiently fast-decreasing radial function.
Moreover, its regularity depends on the parameter m ≥ 1.

Let m = 1 and consider the one-dimensional case of equation (3.5),

uxx + (uW ′
k ∗ u)x = 0, x ∈ R, (3.6)

which for a function u satisfying the assumptions, can be rewritten as equation

u = exp(−Wk ∗ u+D), (3.7)
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3.2. Stationary solutions 35

where D ∈ R is an arbitrary constant. Indeed, integrating equation (3.6) and dividing
by u, we obtain

ux
u

= −(Wk ∗ u)x,

and integrating once again we rewrite the result as equation (3.7). Note that in the
first integration step we assumed that

lim
x→−∞

ux(x) + u(x)W ′
k ∗ u(x) = 0. (3.8)

Analogous procedure can by applied in the case m > 1, where one-dimensional
version of problem (3.5) can be reformulated into equation

u = (D − m̄Wk ∗ u)
1

m−1

+ , (3.9)

where m̄ = (m− 1)/m and function u satisfies

lim
x→−∞

(um)x(x) + u(x)W ′
k ∗ u(x) = 0. (3.10)

Constant D ∈ R is arbitrary and v+(x) = max{v(x), 0} denotes non-negative part of
a function v.

In examples (3.17) and (3.19), we describe explicit multidimensional solutions to
problem (3.5) with k = 2, which are also solutions to the following system of partial
differential equations,

∇um + u∇(Wk ∗ u) = 0, x ∈ Rd. (3.11)

We use this observation as a justification for searching d-dimensional solutions, d ≥ 2,
to problem (3.5) by solving system (3.11). By the same arguments as in the one-
dimensional case, one can rewrite this system as equation (3.7) or (3.9), depending
on the parameter m. We assume that constant of integration D ∈ R is the same in
every dimension and independent of variable xi.

We conclude this introduction with two results following from Lemma 3.1, which
highlight certain properties of stationary solutions and are particularly useful in this
context.

Lemma 3.3. Let d ≥ 1, m = 1 and k > 0. Assume that U is a solution to prob-
lem (3.5) such that ∫

Rd

|x|kU(x) dx < +∞.

Then for all λ > 0, ∫
Rd

|x|kUλ(x) dx =

∫
Rd

|x|kU(x) dx = µd,k,

where Uλ is defined in Lemma 3.1 and constant µd,k > 0 is independent of λ.
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36 Chapter 3. Special solutions to ADE

Proof. By a straightforward calculation, using substitution y = λγx, we obtain∫
Rd

|x|kUλ(x) dx =

∫
Rd

|x|kλαU(λγx) dx

= λα
∫
Rd

|λ−γy|kU(y)λ−γddy

= λα−γ(k+d)

∫
Rd

|y|kU(y) dy

and from equations (3.3) with m = 1, we get α− γ(k + d) = 0.

Remark 3.4. Let U1 and Uλ be solutions to problem (3.5), where∫
Rd

U1(x) dx = 1 and
∫
Rd

Uλ(x) dx =M.

Then UM(x) =Mα1U1(M
γ1x) is also a solution to problem (3.5), where

α1 =
d+ k

d(m− 1) + k
and γ1 =

2−m

d(m− 1) + k
.

3.2.1 Properties of the operator F

Equation (3.7) is an equation for a fixed point, thus we introduce the operator

F1(φ) = exp(−Wk ∗ φ+D), D ∈ R, (3.12)

where function φ is defined for all x ∈ Rd. We study properties of operator F1, which
is well-defined for appropriate functions, see proposition below.

Proposition 3.5. Let d ≥ 1, k > 0 and

Φ =
{
φ ∈ L1

(
Rd, (1 + |x|k) dx

)
∩ C(Rd) :

φ is a positive, radially decreasing function
}
, (3.13)

then operator F1, defined by formula (3.12), satisfies F1 : Φ → Φ and F1(φ) ∈
C1(Rd). Moreover, for all φ ∈ Φ, there exist numbers a1, a2, b1, b2 > 0, depending on
φ, such that

a1 exp
(
−b1|x|k

)
≤ F1(φ)(x) ≤ a2 exp

(
−b2|x|k

)
(3.14)

for all x ∈ Rd.

Estimate (3.14) seems natural due to the form of operator (3.12). In particular,
behavior for large |x| is like exp(−|x|k). For the record, we notice the same for explicit
stationary solutions to problem (3.5) with m = 1, described in Subsection 3.2.3. Also,
function F1(φ) has improved regularity compared to φ, see Remark 3.7, below. Before
proving this proposition, we present lemma on the radial decay of the convolution.
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3.2. Stationary solutions 37

Lemma 3.6. Let d ≥ 1, k > 0, Wk be defined by formula (3.2) and φ be such that
convolution Wk ∗ φ exists for all x ∈ Rd. If φ is a continuous, positive and radially
decreasing function, then Wk ∗ φ is continuous, positive and radially increasing.

Proof. Continuity and positivity of convolution is obvious. Radial symmetry

Wk ∗ φ(Sx) = Wk ∗ φ(x)

follows from a suitable substitution in the integral and properties of S ∈ SO(d).
For the radial monotonicity, fix x ∈ Rd, x ̸= 0, and consider the difference

Wk ∗ φ(rx)−Wk ∗ φ(x) =
1

k

∫
Rd

φ(y)g(y) dy, (3.15)

where r > 1 is fixed and g(y) = |rx − y|k − |x − y|k. Function g is anti-symmetric
with respect to the hyperplane H = {y ∈ Rd : g(y) = 0}, i.e., for all y ∈ Rd,
g(y) = −g(y + 2

−→
yy′), where y′ is an orthogonal projection of y on H. Moreover,

g(0) > 0, and by monotonicity of function φ we have∫
{g(y)>0}

φ(y) dy >

∫
{g(y)<0}

φ(y) dy,

thus Wk ∗ φ(rx) −Wk ∗ φ(x) > 0. Proof for x = 0 is analogous, where one should
consider g(y) = |z − y|k − |y|k for any z ∈ Rd.

Proof of Proposition 3.5. We begin with φ satisfying only φ ∈ L1
(
Rd, (1 + |x|k) dx

)
.

We estimate the convolution term in formula (3.12) from below, using Lemma 2.27
and 2.28, depending on the dimension d,

Wk ∗ φ(x) ≥ |x|k ck
k

∫
D(x)

φ(y) dy +
ck
k

∫
D(x)

|y|kφ(y) dy,

where for fixed x ∈ Rd, we define the set D(x) = {y ∈ Rd : ⟨x, y⟩ ≤ 0}. It is easy to
see that for a non-negative, radially symmetric function v ∈ L1(Rd),∫

D(x)

v(y) dy =
1

2

∫
Rd

v(y) dy,

thus we obtain

F1(φ)(x) ≤ exp

(
−|x|k ck

2k

∫
Rd

φ(y) dy − ck
2k

∫
Rd

|y|kφ(y) dy +D

)
. (3.16)

We note that, by the definition, F1(φ)(x) ≥ 0 for all x ∈ Rd. From inequal-
ity (3.16) we conclude, using finiteness of the integrals, that ∥F1(φ)∥∞ ≤ eD, thus
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38 Chapter 3. Special solutions to ADE

we can assume φ ∈ L∞(Rd). Furthermore, if φ0 ≡ 0, then F1(φ0) ≡ eD, thus
F1(φ) ∈ L1

(
Rd, (1 + |x|k)

)
as long as we exclude φ0 from this set.

Assuming continuity of φ, F1(φ) is obviously continuous from the properties of
convolution and composition of functions. Radial decay of F1(φ), assuming φ is
radially decreasing, follows from Lemma 3.6.

To get lower estimate in inequality (3.14), we proceed analogously as in the upper
estimate, using Lemma 2.26 to obtain

F1(φ)(x) ≥ exp

(
−|x|kCk

k

∫
Rd

φ(y) dy − Ck

k

∫
Rd

|y|kφ(y) dy +D

)
.

To show that F1(φ) ∈ C1(Rd), we consider convolution ∂Wk/∂xi ∗ φ, which for
k > 1 is continuous because ∂Wk/∂xi = xi|x|k−2 is continuous. This convolution has
a polynomial bound ∣∣∣∣∂Wk

∂xi
∗ φ(x)

∣∣∣∣ ≤ C1|x|k−1 + C2 (3.17)

for some C1, C2 > 0, from Lemma 2.26. For k ∈ (0, 1], we show continuity of convo-
lution by the distributive property,

∂Wk

∂xi
∗ φ =

∂Wk

∂xi

∣∣∣∣
BR(0)

∗ φ+
∂Wk

∂xi

∣∣∣∣
Rd\BR(0)

∗ φ, (3.18)

where each term in the above formula is a convolution with either L1- or L∞-function,
thus continuous. In addition, this convolution is bounded by Lemma 2.3.

Due to the continuity and estimates for the convolution ∂Wk/∂xi ∗ φ, along with
the exponential bound (3.14) for the continuous function F1(φ), partial derivative

∂F1(φ)

∂xi
= −

(
∂Wk

∂xi
∗ φ
)
F1(φ) (3.19)

is a continuous and bounded function.

Remark 3.7. We explain the idea of improved regularity on the following example.
Consider second derivative of the function F1(φ),

∂2F1(φ)

∂xj∂xi
= −

(
∂Wk

∂xi
∗ ∂φ

∂xj

)
F1(φ)−

(
∂Wk

∂xi
∗ φ
)
∂F1(φ)

∂xj
.

We assume that ∂φ/∂xi ∈ L1
(
Rd, (1 + |x|max{0,k−1}) dx

)
∩ L∞(Rd) and we note, that

derivative ∂F1(φ)/∂xi has an exponential bound, analogous to estimate (3.14), which
follows from the definition (3.19). Now, one can follow arguments from the proof of
Proposition 3.5 to show that F1(φ) ∈ C2(Rd).
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Higher regularity of F(φ) can be shown in an analogous way, assuming more
regularity on the function φ. In particular, if φ ∈ S(Rd) then F(φ) ∈ S(Rd), where
S(Rd) is the space of rapidly decreasing functions on Rd.

Remark 3.8. One can formulate analogous results for the operator arising from the
equation (3.9),

Fm(φ) = (D − m̄Wk ∗ φ)
1

m−1

+ ,

with m > 1 and D > 0. For Φ defined in (3.13), Fm : Φ → Φ and there exist numbers
a1, a2, b1, b2 > 0, depending on φ, such that(

a1 − b1|x|k
) 1

m−1

+
≤ Fm(φ)(x) ≤

(
a2 − b2|x|k

) 1
m−1

+
(3.20)

for all x ∈ Rd. In particular, Fm(φ) is a compactly supported function. On the other
hand, assuming D ≤ 0, Fm(φ) ≡ 0 for every φ ∈ Φ.

Improved regularity of the function Fm(φ) with respect to φ depends essentially
on m > 1. For m ∈ (1, 2), we take an arbitrary function φ ∈ Φ and consider the
derivative

∂Fm(φ)

∂xi
= − 1

m

(
∂Wk

∂xi
∗ φ
)
Fm(φ)

2−m. (3.21)

From the proof of Proposition 3.5, convolution ∂Wk/∂xi ∗ φ is a continuous func-
tion on Rd and Fm(φ)

2−m is a continuous and compactly supported function, thus
∂Fm(φ)/∂xi ∈ C(Rd) for all k > 0. Formula (3.21) is also valid for m = 2, however,
this derivative is non-zero only on a compact set, thus ∂Fm(φ)/∂xi is bounded, but
not necessarily continuous function on Rd.

Let m > 2. Function Fm(φ)
2−m is unbounded by estimate (3.20), thus we show

only Hölder continuity of Fm(φ). We recall a well-known inequality with t, s ≥ 0 and
m ≥ 2,

|t
1

m−1 − s
1

m−1 | ≤ |t− s|
1

m−1 ,

which we use, to obtain

|Fm(φ)(x)−Fm(φ)(y)| ≤ m̄
1

m−1 |Wk ∗ φ(x)−Wk ∗ φ(y)|
1

m−1

for x, y ∈ suppFm(φ). To estimate the difference on the RHS of the above inequality,
we use multi-variable version of the mean value theorem,

|Wk ∗ φ(x)−Wk ∗ φ(y)| ≤ |x− y| sup
t∈[0,1]

|∇Wk ∗ φ((1− t)x+ ty)| .

Recalling estimates (3.17) and (3.18), quantity |∇Wk ∗ φ((1− t)x+ ty)| can be esti-
mated from above by some constant C > 0 independent of x, y ∈ suppFm(φ) and
t ∈ [0, 1]. Thus, function Fm(φ) is Hölder continuous with exponent 1/(m−1) ∈ (0, 1).
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40 Chapter 3. Special solutions to ADE

Higher regularity of Fm(φ), with m ∈ (1, 2), can be shown in analogous way
as in Remark 3.7, by analysing successive derivatives of Fm(φ) and imposing more
regularity on φ.

A standard approach to solve equations (3.7) and (3.9) is to use one of the two
following theorems: either Banach or Schauder fixed-point theorem. The essential
feature of these two tools is the existence of an invariant set in the neighborhood of
the fixed point. In the next section we will show, based on a concrete example, that
these theorems may not apply in the case of operators F1 and Fm.

3.2.2 Case k = 2

Now, we describe explicit behavior of the operator F1 when k = 2, and we begin with
the following lemma, which is crucial for the analysis.

Lemma 3.9. Let d ≥ 1 and k = 2. We say that function φ is exponential if there
exist some numbers a, b > 0, such that φ(x) = a exp (−b|x|2) . Then for φ exponential,
F1(φ) is also exponential.

Proof. We calculate the convolution Wk ∗ φ,

Wk ∗ φ(x) =
∫
Rd

|x− y|2

2
φ(y) dy

=
1

2
|x|2

∫
Rd

φ(y) dy −
d∑

i=1

xi

∫
Rd

yiφ(y) dy +
1

2

∫
Rd

|y|2φ(y) dy

=
1

2
|x|2

∫
Rd

φ(y) dy +
1

2

∫
Rd

|y|2φ(y) dy,

where sum of the integrals is equal to 0 due to the radial symmetry of function φ.
Substituting convolution into operator F1, we obtain the result.

Now we introduce the following parametrization for an exponential function,

φ(x) =M1+ d
2

(
d

2πm

) d
2

exp

(
−Md

2m
|x|2
)
,

which satisfies ∫
Rd

φ(x) dx =M and
∫
Rd

|x|2φ(x) dx = m.

Therefore, we can represent any exponential function by coordinates (M,m) ∈ R2

and moreover, by Lemma 3.9, function

F1(φ)(x) = exp

(
−M

2
|x|2 − m

2
+D

)
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3.2. Stationary solutions 41

can be described in the same manner by pair (MF ,mF ) ∈ R2, where∫
Rd

F1(φ)(x) dx =MF and
∫
Rd

|x|2F1(φ)(x) dx = mF .

We conclude this analysis with the definition of operator F2 : R2 → R2,

F2(M,m) = e−
m
2
+D

(
2π

M

) d
2
(
1,

d

M

)
, D ∈ R. (3.22)

Before showing existence and properties of the fixed point of operator F2, we
introduce the definition of the hyperbolic fixed point.

Definition 3.10. We say that fixed point p of operator F : R2 → R2 is hyperbolic, if
eigenvalues of the Jacobian matrix DF (p) satisfy |λ1| < 1 < |λ2|.

Hyperbolic fixed points are also known in the literature as saddle points and have
the following property. There exists a neighborhood V of point p and a non-empty set
V2 ⊂ V such that for every ball BR(p) ⊂ V , BR(p)∩V2 ̸= ∅ and for all x ∈ BR(p)∩V2,
F n(x) leaves the ball BR(p) as n increases. For more details on the properties of the
hyperbolic points we refer the reader to, e.g, [71].

Proposition 3.11. Operator F2, defined in formula (3.22), has a unique hyperbolic
fixed point

p =

(
exp

(
−d+ 2D

d+ 2

)
(2π)d/(d+2), d

)
for every D ∈ R.

Proof. Existence of the fixed point follows from the equation F2(M,m) = (M,m).
By the Grobman-Hartman theorem, we calculate eigenvalues of the Jacobian matrix
DF2(p),

λ1 =
1

2

(
−d+

√
d(d+ 2)

)
and λ2 = −1

2

(
d+

√
d(d+ 2)

)
,

where they satisfy condition in Definition 3.10.

From these considerations, we conclude that regarding operator F2, there is no
invariant closed neighborhood of the fixed point p. This behavior suggests, that either
Banach or Schauder fixed-point theorem may also not apply for the operator F1 with
k > 0. Below, we present a graphical representation of the set of points x ∈ R2

satisfying condition |p− x| < |p− F2(x)|.
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Figure 3.1: Points satisfying inequality |p− x| < |p− F2(x)| for fixed point p = (1, 1).

Remark 3.12. Based on the numerical examination of the operator F2, we notice
existence of the invariant curves i.e., we suppose that there exist at least two solutions
h1, h2 to the following functional equation,{

F2(M,h(M)) = (Mh,mh)

mh = h(Mh).

Moreover, h1 is a contraction around the fixed point, where h2 manifests the opposite.

3.2.3 Explicit solutions

In this subsection, we show detailed calculations for certain steady states to prob-
lem (3.5), which can be expressed by an explicit formula. In the one-dimensional case
this problem can be simplified to the following one

(um)x + uW ′
k ∗ u = 0, (3.23)

assuming condition (3.8) or (3.10), depending on the parameter m ≥ 1. In the
following two examples, we solve equation (3.23) directly for k = 1 using function
W ′

1(x) = sgn(x).

Example 3.13 (d = 1, m = 1, k = 1). We look for a solution u ∈ L1(R) to prob-
lem (3.23) such that ∫

R
u(x) dx =M.

For such u we can define function v by

v(x) =

∫ x

−∞
u(y) dy,
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3.2. Stationary solutions 43

then by the definition,

lim
x→−∞

v(x) = 0, lim
x→+∞

v(x) =M and v′(x) = u(x).

We calculate convolution in equation (3.23) in the following way,

W ′
1 ∗ u(x) =

∫
R
sgn(x− y)v′(y) dy

=

∫ x

−∞
v′(y) dy −

∫ +∞

x

v′(y) dy

= 2v(x)−M.

(3.24)

Substituting u = v′ and z = 2v −M in equation (3.23), we obtain a second-order
nonlinear ordinary differential equation

z′′ + zz′ = 0

for functions z satisfying

lim
x→+∞

z(x) = − lim
x→−∞

z(x) =M. (3.25)

This problem is well-known as a stationary version of viscous Burgers’ equa-
tion [22], and can be solved explicitly, where solution is given by the formula

Z(x) =
√
2a tanh

(
1

2

(√
2ax+ b

√
2a
))

,

where a > 0 and b ∈ R. For the sake of clarity, we omit the translation term by
setting b = 0. Notice that limx→+∞ Z(x) ≥ 0, thus this solution is valid only when
M ≥ 0.

Plugging the substitution back, we obtain a one-parameter family of solutions

UM(x) =
M2

4
sech2

(
M

2
x

)
.

Function UM is smooth and symmetric, has scaling UM(x) = M2U1(Mx) consistent
with Remark 3.4 and satisfies an exponential decay,

lim
|x|→+∞

UM(x) exp(M |x|) =M2.

Example 3.14 (d = 1, m = 2, k = 1). Proceeding analogously as in Example 3.13, we
obtain a first-order nonlinear ordinary differential equation

(z′)m + 2m−2z2 = C, C ∈ R, (3.26)

59:43290



44 Chapter 3. Special solutions to ADE

for functions z satisfying condition (3.25).
This equation can be solved explicitly for m = 2 and C > 0, where we obtain

arcsin

(
z(x)√
C

)
= x+ t,

for −
√
C ≤ z(x) ≤

√
C and −π/2 ≤ x+t ≤ π/2. Parameter t ∈ R can be interpreted

as translation, thus we fix t = 0. Function z can be extended to a continuous function
on the whole domain in the following way,

Z(x) =


−
√
C x < −π

2√
C sin(x) x ∈

[
−π

2
, π
2

]
√
C x > π

2
,

therefore it satisfies condition at infinity for
√
C =M ≥ 0.

Plugging back the substitution, we obtain a family of solutions

UM(x) =

{
M
2
cos(x) x ∈

[
−π

2
, π
2

]
0 otherwise,

(3.27)

where UM ∈ C(R), it is a symmetric function on the whole domain and smooth
inside of the support. Moreover, all derivatives are bounded on R, but not necessarily
continuous. Notice, that support of a rescaled function UM(x) = MU1(x) does not
depend on the parameter.

Remark 3.15. When proceeding in Example 3.14, we omitted the case when derivative
is negative, i.e., z′ = −

√
C − z2, from which one can obtain the following family of

functions,

VM(x) =

{
−M

2
cos(x) x ∈

[
−π

2
, π
2

]
0 otherwise,

where M ≥ 0, which also happens to solve equation (3.23).
According to the literature [77], nonlinear term ∆um in problem (3.5) is considered

only for the non-negative scalar function u, due to the physical motivation. Most used
choice for properly defining ∆um for negative functions is the so-called Signed PME,
where nonnlinearity is of the form ∆(|u|m−1u). We notice that function VM does not
satisfy equation (3.23) with such nonlinearity.

Remark 3.16 (d = 1, m > 1, k = 1). Assuming C > 0 and m > 1, we compute the
integral corresponding to equation (3.26) numerically, using Wolfram Mathematica,
and derive the following implicit equation,

Cmw(x)2F1

(
1

2
,
1

m
;
3

2
;w(x)2

)
= x+ t,
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3.2. Stationary solutions 45

where z = 21−m/2C1/2w, 2F1 is the Gaussian hypergeometric function [2], Cm =

21−m/2C(m−2)/2m, |x + t| ≤ 2F1(1/2, 1/m; 3/2; 1)Cm and t ∈ R can be interpreted as
a translation.

Let t = 0 and
gm(w) = w2F1

(
1

2
,
1

m
;
3

2
;w2

)
.

By the same procedure as in Example 3.14, we calculate M = C1/221−m/2 and obtain
a family of solutions to problem (3.23) in an implicit form,

UM(x) = 2−
2
mM

2
m

(
g−1
m

)′ (
21−

m
2 M

2
m
−1x
)
,

where g−1
m denotes inverse function. This representation is consistent with solu-

tion (3.27) and scaling from Remark 3.4.
Figures presented below illustrate numerical approximations of these solutions,

and for a detailed explanation of the underlying computation, we refer to the Ap-
pendix A.
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Figure 3.2: Simulations for a fixed M = 2 with
m as a parameter.
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Figure 3.3: Simulations for a fixed m = 5 with
mass M as a parameter.

In next two examples we solve equation (3.5) in higher dimensions as well, by
looking for a solution in a specific form. We use the fact that for k = 2 gradient of
the convolution kernel W2 satisfies ∇W2 = (x1, ..., xd). This approach, in contrast to
Proposition 3.11, gives solutions directly, which are independent of constant D ∈ R.

Example 3.17 (d ≥ 1, m = 1, k = 2). We look for a solution in the following form,

U(x) = a exp
(
−b|x|2

)
, a, b > 0, (3.28)
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46 Chapter 3. Special solutions to ADE

and we calculate the convolution ∇W2 ∗ U . For the i-th variable we have

∂W2

∂xi
∗ U(x) =

∫
Rd

(xi − yi)a exp
(
−b|y|2

)
dy

=xi

∫
Rd

a exp
(
−b|y|2

)
dy

− a

∫
R
yi exp

(
−by2i

)
dyi

(∫
R
exp

(
−bt2

)
dt

)d−1

=Mxi,

(3.29)

where second integral is equal to zero by the symmetry of function exp (−by2i ). Cal-
culating the divergence, we obtain

∇ · (U∇W2 ∗ U) =M
d∑

i=1

∂

∂xi
(xiU(x)) = dMU(x)− 2bMU(x)

d∑
i=1

x2i

and for the i-th second derivative, we have

∂2U

∂x2i
= 4b2x2iU(x)− 2bU(x).

Substituting these results into equation (3.5), we obtain a system of two equations{
4b2 − 2bM = 0

dM − 2db = 0,

which are equivalent. We conclude that M = 2b and by calculating the mass of the
function U ,

M =

∫
Rd

a exp
(
−b|x|2

)
dx = ab−

d
2π

d
2 ,

we obtain a relation between a, b and M . Thus, for fixed d ≥ 1, we get a one-
parameter family of solutions

UM(x) = (2π)−
d
2M1+ d

2 exp

(
−M

2
|x|2
)
, M ≥ 0,

where UM is a symmetric smooth function satisfying UM(x) =
√
M

d+2
U1(

√
Mx).

Remark 3.18. Based on the calculations in (3.29), we note that, assuming U takes
the form (3.28), equation (3.5) with m = 1 and k = 2 resembles the Fokker-Planck
equation, for which the existence of stationary solutions in exponential form is well-
established (see, e.g., [73]).
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Example 3.19 (d ≥ 1, m > 1, k = 2). In this case, we look for a solution

U(x) =
(
a− b|x|2

) 1
m−1

+
, a, b > 0,

where for m > 2, function U belongs to the Hölder space C0,1/(m−1)(Rd). Therefore,
we show that U is a weak solution to problem (3.5), i.e., it satisfies∫

Rd

(∇Um + U∇(Wk ∗ U)) · ∇ψ dx = 0

for all ψ ∈ C∞
c (Rd).

Calculations for the convolution are analogous as in Example 3.17, providing
U(∂W2/∂xi) ∗ U =MxiU(x), and for the nonlinear diffusion, we have

∂Um

∂xi
= −2b

m̄
xiU(x),

where m̄ = (m − 1)/m. Comparing both terms, we get M = 2b/m̄, and using
d-spherical coordinates with adequate substitutions, we obtain

M =

∫
Rd

(
a− b|x|2

) 1
m−1

+
dx =

1

2
a

1
m−1

+ d
2 b−

d
2σd,m,

where
σd,m = σdB

(
d

2
,
1

m̄

)
,

thus constants a, b > 0 can be described by the parameter M > 0.
After substitution and rewriting the formula, we obtain scaling consistent with

Remark 3.4,
UM(x) =M

d+2
κ U1

(
M

2−m
κ x
)
,

where κ = d(m− 1) + 2 and

U1(x) =
(
22−dσ−2

d,mm̄
d
) 1

κ

(
1−

(
2−mσm−1

d,m m̄
) 2

κ |x|2
) 1

m−1

+
. (3.30)

Notice that for m ∈ (1, 2), U1 ∈ C1(Rd) and Um
1 ∈ C2(Rd), thus it is the classical

solution to problem (3.5).

Remark 3.20. Solutions obtained in Remark 3.16 and Example 3.19 resemble in shape
the Barenblatt solution [3]. This is consistent with estimates (3.20) obtained for the
operator Fm.
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48 Chapter 3. Special solutions to ADE

Remark 3.21. It is well-known, that Barenblatt solution converges pointwise on Rd

to the Gaussian kernel as m→ 1, for any given mass M > 0. Thus, one would expect
the same relationship for solutions obtained in Examples 3.17 and 3.19. Indeed, let
for simplicity M = 1 and we rewrite solution (3.30) as

Um(x) =
(
22−dσ−2

d,mm̄
d
) 1

κ

1−
1
2
|x|2

1
2

(
2−mσm−1

d,m m̄
)− 2

κ

 1
m−1

+

.

To show pointwise convergence, it is sufficient to notice that

lim
m→1

Γ
(
d
2
+ 1

m̄

)
Γ
(

1
m̄

) m̄
d
2 = 1 and lim

m→1

2
(
2−mσm−1

d,m m̄
) 2

κ

m− 1
= 1,

which follows from the properties of Γ function.

3.2.4 Integral equation

Recall equation (3.9) with d = 1 and D > 0. We assume that solution u to this
equation is a symmetric, compactly supported function, thus by substitution um−1 =

v, we obtain

v(x) = D − m̄

k

∫ R

−R

|x− y|kv(y)
1

m−1 dy, (3.31)

where k > 0, m̄ = (m−1)/m and R > 0. Such equation is well-known in the literature
as the nonlinear Fredholm integral equation of the second kind [78]. Existence of
solutions to problem (3.31) with m ∈ (1, 2], can be shown by the Banach fixed point
theorem.

We are particularly interested in the description and numerical simulation of so-
lutions to equation (3.31) in some cases. Assuming k = 2l, l ∈ N+ and m > 1 such
that 1/(m− 1) = n ∈ N+, we can rewrite equation (3.31) as

v(x) = D − 1

2l(n+ 1)

l∑
i=0

c2ix
2i,

where

c2i =

∫ R

−R

v(y)ny2l−2i dy.

Moreover, we assume v(−R) = v(R) = 0 and note that

c2l =

∫ R

−R

v(y)n dy =

∫ R

−R

u(y) dy,
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3.3. Sign-changing solution 49

thus we set c2l =M .
We conclude these considerations by formulating problem (3.31) in terms of a sys-

tem of l-nonlinear equations on the coefficients c2i and number R > 0,
v(x) =

1

2l(n+ 1)

l∑
i=1

c2i
(
R2i − x2i

)
c2i =

∫ R

−R

v(y)ny2l−2i dy, i ∈ {1, ..., l − 1}

c2l =M,

(3.32)

which we solve numerically for M = 1 in some cases, and present the results below.
For the code solving this system, we refer to the Appendix A.
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Figure 3.4: Simulations for a fixed k = 4 with
m as a parameter.
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k as a parameter.

Remark 3.22. This approach can be extended to a two-dimensional case in the same
manner. Moreover, one can consider more general class of kernels in the formK(x, y) =∑n

l=1 clgl(x)hl(y), which are known as separable kernels.

3.3 Sign-changing solution

In this section, we show derivation of a sign-changing solution to problem (3.1) for
d = m = k = 1. For a sufficiently regular u ∈ L1(R), such that∫

R
u(t, x) dx = 0,

we recall procedure from Example 3.13 and obtain the viscous Burger’s equation

zt + zzx = zxx,

where u(t, x) = −zx(t,−x)/2 and limx→±∞ z(t, x) = 0 for t > 0. Existence of a sign
changing solution for this equation is well-known (see, e.g., [79]), where it is obtained
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50 Chapter 3. Special solutions to ADE

by the Hopf-Cole transformation. In the literature, it is referred to asN -wave solution,
due to the characteristic shape of the letter N , and defined by

N(t, x) =
x

t

(
1 +

√
t exp

(
x2

4t

))−1

.

Substituting this formula into the relation between u and z, we get

n(t, x) = − 1

2t

(
1 +

√
t exp

(
x2

4t

))−1

+
x2

4t
3
2

exp

(
x2

4t

)(
1 +

√
t exp

(
x2

4t

))−2

,

and we note that scaling resulting from Lemma 3.1 do not apply in this case. More-
over, n(t, x) → 0 pointwise on R, as t → +∞. For a description of a work plan
considering this problem, we refer the reader to Section 1.3. Here, we include plot of
the evolution in time of solution n.
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Figure 3.6: Evolution in time of the sing-changing solution n to problem (3.1).
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Chapter 4

Chemotaxis model in the uniformly
local Lp-spaces

4.1 Main results

This chapter is devoted to the results from the already published paper [42] of which
summary we present below. For a detailed description of the author’s main contribu-
tion to this publication, we refer the reader to Section 4.2.

Our goal is to study properties of solutions to the Cauchy problem for the simpli-
fied parabolic–elliptic Keller–Segel model of chemotaxis

ut −∆u+∇ · (u∇ψ) = 0, t > 0, x ∈ Rd,

−∆ψ + ψ = u, t > 0, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd,

(4.1)

with d ≥ 1. We solve the second equation with respect to ψ to obtain ψ = K ∗ u,
where K is the Bessel function, described in the following lemma. In this result and
throughout this chapter, we use standard definition of the Fourier transform,

f̂(ξ) = (2π)−
d
2

∫
Rd

e−iξ·xf(x) dx.

Lemma 4.1. Denote by ψ ∈ S ′(Rd) a solution to the equation −∆ψ + ψ = u for
some u ∈ S ′(Rd) (the space of tempered distributions), then the following statements
hold true.

i) ψ = K ∗ u, where K̂(ξ) = 1
1+|ξ|2 .

ii) For d = 1, K(x) = 1
2
e−|x|.

iii) For d ≥ 2, K ∈ L1(Rd) ∩ Lp(Rd) for each p ∈
[
1, d

d−2

)
and ∇K ∈ L1(Rd) ∩

Lq(Rd) for each q ∈
[
1, d

d−1

)
.

51
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52 Chapter 4. Chemotaxis model in the uniformly local Lp spaces

iv) |∇K(x)| = |K ′(|x|)| = −K ′(|x|) is radially symmetric and decreasing in |x|.

Thus, we can reduce problem (4.1) to the following one{
ut −∆u+∇ · (u∇K ∗ u) = 0, t > 0, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd.
(4.2)

We begin by a result on the existence of local-in-time solutions to problem (4.2) in
the uniformly local Lebesgue spaces Lp

uloc(Rd), which are defined as

Lp
uloc(R

d) ≡

{
f ∈ Lp

loc(R
d) : ∥f∥p,uloc ≡ sup

x∈Rd

(∫
B1(x)

|f(y)|p dy
)1/p

< +∞

}

for p ∈ [1,∞) and L∞
uloc(Rd) = L∞(Rd). In fact, there is an alternative definition of

the norm in the uniformly local Lp-spaces,

∥f∥p,uloc,ρ ≡ sup
x∈Rd

(∫
Bρ(x)

|f(y)|p dy

)1/p

for each ρ > 0, but by a simple scaling property one can show that these norms are
in fact equivalent.

Theorem 4.2. For each p satisfying

p ∈ [1,∞] if d = 1,

p ∈
[
3

2
,∞
]

if d = 2,

p ∈
(
d

2
,∞
]

if d ≥ 3,

(4.3)

and every u0 ∈ Lp
uloc(Rd), there exists T > 0 and a unique mild solution

u ∈ L∞([0, T ), Lp
uloc(R

d)
)
∩ C

(
(0, T ), Lp

uloc(R
d)
)

of problem (4.2). Moreover, if u0 ≥ 0, then u(t, x) ≥ 0 almost everywhere in [0, T )×
Rd.

The standard proof of Theorem 4.2 is based on the Banach contraction princi-
ple (see Proposition 2.5) applied to an integral representation of solutions to prob-
lem (4.2), namely

u(t) = et∆u0 −
∫ t

0

∇e(t−s)∆ · (u(s)∇K ∗ u(s)) ds.
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Constraints imposed on the exponent p in Theorem 4.2 result from the estimation of
the nonlinear term in the space Lp

uloc(Rd).
This restriction on p is not needed in the paper [76], where the solution is con-

structed in a smaller space

Lp
uloc(R

d) = BUC(Rd)
∥·∥p,uloc

,

where BUC(Rd) is a space of all bounded uniformly continuous functions on Rd.
Solutions constructed in this space have improved spatial regularity and are also
continuous at time t = 0 (see, e.g., [69, Proposition 2.2]), in contrast to the ones
obtained in Theorem 4.2. Notice that mapping

t 7→ et∆f ∈ L∞((0, ∞), Lp
uloc(R

d)
)

for each f ∈ Lp
uloc(R

d)

is in general not continuous. However, one can prove continuity in the weak sense
i.e., showing that for all φ ∈ C∞

c (Rd) the following mapping

t 7→
∫
Rd

et∆f(x)φ(x) dx

is continuous.
Next, we study a solution u = u(t, x) of problem (4.2) which is a perturbation of

the constant stationary solution A ∈ R. Thus, the function

v(t, x) = u(t, x)− A

satisfies the following nonlinear problem.{
vt −∆v + A∆K ∗ v +∇ · (v∇K ∗ v) = 0, t > 0, x ∈ Rd,

v(0, x) = v0(x), x ∈ Rd.
(4.4)

In fact, we consider a mild solution to this problem satisfying the integral equation

v(t) = SA(t)v0 −
∫ t

0

∇SA(t− τ) · (v(τ)∇K ∗ v(τ)) dτ,

where the semigroup {SA(t)}t≥0 is studied in Section 4.2. In particular, this semigroup
commutes with ∇· by the same reasoning as for heat semigroup, i.e., we have a relation

∇et∆v0 = et∆∇v0

which can be justified by applying Fourier transform. Notice that this relation is
usually not valid in a bounded domain with a suitable boundary condition.
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In this setting one can show existence and uniqueness of the local-in-time mild
solution to problem (4.4) for v0 ∈ Lp(Rd), in the space C

(
[0, T ), Lp(Rd)

)
, for p sat-

isfying condition (4.5). The following corollary is an immediate consequence of the
uniqueness of solutions established in Theorem 4.2 combined with the uniqueness
result of solutions to the perturbed problem (4.4).

Corollary 4.3. Let p satisfy conditions (4.3). For every A ∈ R and every v0 ∈ Lp(Rd)

there exists a unique local-in-time mild solution u = u(x, t) of problem (4.2) (as stated
in Theorem 4.2) corresponding to the initial datum u0 = A + v0 ∈ Lp

uloc(Rd). This
solution satisfies u− A ∈ C

(
[0, T ), Lp(Rd)

)
.

Next, we show that one can construct global-in-time solutions around each con-
stant solution A ∈ [0, 1).

Theorem 4.4. Let A ∈ [0, 1) and let p satisfy condition

p = 1 if d = 1 or p ∈
(
d

2
, d

]
if d ≥ 2. (4.5)

Fix q ∈ (d, 2p]. There exists ε > 0 such that for every v0 ∈ Lp(Rd) with ∥v0∥p < ε,
problem (4.2) with the initial condition u0 = A+ v0 has a unique global-in-time mild
solution u(x, t) satisfying u− A ∈ C

(
[0,∞), Lp(Rd)

)
and

∥u(t)− A∥p + t
d
2(

1
p
− 1

q )∥u(t)− A∥q ≤ C∥u0 − A∥p

for a constant C > 0 independent of t and all t > 0.

The estimate from Theorem 4.4 can be interpreted as a stability of each constant
solution A ∈ [0, 1) in Lp(Rd) and asymptotic stability in Lq(Rd).

The smallness assumption imposed on initial conditions in Theorem 4.4 seems to
be necessary. This is clear in the case A = 0, where sufficiently large initial data lead
to solutions which blow-up in finite time, see, e.g., [14, 40, 55, 59] for blow-up results
for solutions for system (1.7) considered in the whole space.

Next, we deal with case A > 1 which appears to be the unstable constant station-
ary solution.

Theorem 4.5. The constant stationary solution A > 1 of problem (4.2) is not stable
in the Lyapunov sense under small perturbations from Lp(Rd) for each p satisfying
condition (4.3) except p = 1 and p = ∞.
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In this theorem, we do not claim that solutions corresponding to Lp-perturbations
of A > 1 are global-in-time. We show only that if they are global-in-time then they
cannot be stable.

To conclude this overview, we notice that a constant A < 0 is linearly stable
which we comment in Remark 4.14, below. The proof of nonlinear stability of this
constant can be obtained by the method used in the proof of Theorem 4.4. We add
some comments on the linear stability of the constant solution A = 1 in Remark 4.15,
below.

4.2 Linearized problem

We consider problem (4.4) without nonlinear part, namely{
vt −∆v + A∆K ∗ v = 0, t > 0, x ∈ Rd,

v(0, x) = v0(x), x ∈ Rd,

where A ∈ R is an arbitrary constant and operator ∆− A∆K∗ can be expressed by
the Fourier transform as follows

(∆φ− A∆K ∗ φ)̂(ξ) = (−|ξ|2 + A
|ξ|2

1 + |ξ|2

)
φ̂(ξ), ξ ∈ Rd. (4.6)

We begin by presenting preliminary properties of this operator.

Lemma 4.6. There exists a constant L > 0 such that for each p ∈ [1,∞],

∥ −∆K ∗ v∥p ≤ L∥v∥p for all v ∈ Lp(Rd). (4.7)

Sketch of the proof. From identity (4.6), we conclude that the action of the operator
−∆K∗ can be represented by convolution with a finite measure on Rd, described by a
function 1− 1/(1+ |ξ|2) in the Fourier variable. For more details, we refer the reader
to e.g., [74, Lemma 2.(i), p.133].

Lemma 4.7. For each A ∈ R, a closure in Lp(Rd) of the operator ∆− A∆K∗ gener-
ates an analytic semigroup {SA(t)}t≥0 on Lp(Rd) for every p ∈ [1,∞). This semigroup
is defined by the Fourier transform by the formula

ŜA(t)v0(ξ) = µ̂A(t, ξ)v̂0(ξ),

where

µ̂A(t, ξ) = e
−t

(
|ξ|2−A

|ξ|2

1+|ξ|2

)
. (4.8)
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56 Chapter 4. Chemotaxis model in the uniformly local Lp spaces

Proof. It is well-known that Laplacian generates an analytic semigroup of linear op-
erators on Lp(Rd) for every p ∈ [1, ∞) and bounded perturbation of such operator
maintains the same property (see, e.g., [43, Example 4.10, p.107 and Theorem 2.10,
p.176]). The Fourier representation of this semigroup can be obtained by routine
calculations.

Lemma 4.8. Assume that A ∈ R and choose the constant L from inequality (4.7).
Then for each 1 ≤ q ≤ p ≤ ∞, there exists a constant C = C(d, p, q) > 0 such that

∥SA(t)v0∥p ≤ Ct−
d
2(

1
q
− 1

p)e|A|Lt∥v0∥q

and
∥∇SA(t)v0∥p ≤ Ct−

d
2(

1
q
− 1

p)−
1
2 e|A|Lt∥v0∥q

for all t > 0 and v0 ∈ Lq(Rd).

Proof. Here, we use the notation SA(t)v0 = et∆(e−A∆K∗v0). Using the Lp-Lq estimates
of the heat semigroup (see Lemma 2.2) and Lemma 4.6, we obtain

∥et∆(e−tA∆K∗v0)∥p ≤ Ct−
d
2(

1
q
− 1

p)∥e−tA∆K∗v0∥q ≤ Ct−
d
2(

1
q
− 1

p)e|A|Lt∥v0∥q.

The proof for the second inequality is analogous.

The following theorem improves estimates from Lemma 4.8 in the case of A ∈
[0, 1) and it plays a crucial role in the proof of stability of constant solutions to
problem (4.2).

Theorem 4.9. Assume that A ∈ [0, 1). For all exponents satisfying 1 ≤ q ≤ p ≤ ∞
there exist constants C = C(d,A, p, q) > 0 such that

∥SA(t)v0∥p ≤ Ct−
d
2(

1
q
− 1

p)∥v0∥q (4.9)

and
∥∇SA(t)v0∥p ≤ Ct−

d
2(

1
q
− 1

p)−
1
2∥v0∥q (4.10)

for all t > 0 and v0 ∈ Lq(Rd).

The proof of this theorem is based on the following lemmas.

Lemma 4.10. Let D̂Nv(ξ) ≡ |ξ|N v̂(ξ) for all N ∈ R. For all v ∈ S(Rd) (the
Schwartz class of smooth rapidly decreasing functions) and for every N > d

2
, the

following inequality holds

∥v∥1 ≤ C∥v̂∥1−
d

2N
2 ∥DN v̂∥

d
2N
2 ,

with a constant C = C(d,N) > 0.
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Proof. We calculate the L1-norm of the function v in the following way for some
R > 0,

∥v∥1 =
∫
|x|≤R

|v(x)| dx+
∫
|x|>R

|v(x)| dx

≤
(∫

|x|≤R

dx

) 1
2
(∫

|x|≤R

|v(x)|2 dx
) 1

2

+

(∫
|x|>R

|x|−2N dx

) 1
2
(∫

|x|>R

|x|2N |v(x)|2 dx
) 1

2

≤|Sd−1|
1
2 (R

d
2∥v∥2 +R

d
2
−N∥DN v̂∥2).

Taking R =
(

2N−d
d

∥DN v̂∥2
∥v̂∥2

)1/N
we obtain the result.

Lemma 4.11. Let DNv be defined as before. For all v ∈ S(Rd) and for every N ∈ N,
the following inequality holds

∥DNv∥22 ≤ C
∑
|α|=N

∥∂αv∥22,

with a constant C = C(N) > 0, where α denotes a multi-index.

Proof. By the Plancherel formula and the definition of DNv,

∥DNv∥22 = ∥D̂Nv∥22 =
∫
Rd

|ξ|2N |v̂(ξ)|2 dξ =
∫
Rd

(ξ21 + ...+ ξ2n)
N |v̂(ξ)|2 dξ,

where for N ∈ N last integral is equivalent to the sum of integrals

∑
k1+...+kn=N

(
N

k1, ..., kn

)∫
Rd

d∏
j=1

(ξ2j )
kj |v̂(ξ)|2 dξ.

Using multi-index notation with multi-index α and once again Plancherel formula,
we obtain

∥DNv∥22 ≤ C
∑
|α|=N

∫
Rd

(ξα)2|v̂(ξ)|2 dξ = C
∑
|α|=N

∥ξαv̂∥22 = C
∑
|α|=N

∥∂αv∥22,

with some constant C > 0.

Lemma 4.12. Assume that A ∈ [0, 1). For the function µ̂A defined by formula (4.8)
and for every multi-index α with |α| = N , N ∈ N, there exists a constant C =

C(d,A,N) > 0 such that

∥∂αξ µ̂A(t)∥22 ≤ CtN− d
2 for all t ≥ 1.
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58 Chapter 4. Chemotaxis model in the uniformly local Lp spaces

Proof. For N = 0, by the inequality |ξ|2/(1 + |ξ|2) ≤ |ξ|2 (ξ ∈ Rd), we obtain

∥µ̂A(t)∥22 =
∫
Rd

e
−2t|ξ|2+2At

|ξ|2

1+|ξ|2 dξ ≤
∫
Rd

e−2t(1−A)|ξ|2 dξ = Ct−
d
2 .

For N ≥ 1, we introduce the C∞-function h(ξ) ≡ |ξ|2 − A|ξ|2/(1 + |ξ|2) which
satisfies estimates |∂ξjh(ξ)| ≤ C|ξ| and |∂βξ h(ξ)| ≤ C for every j, 1 ≤ j ≤ d, and
multi-index β with |β| ≥ 2. We use the multivariate Faà di Bruno’s formula (see,
e.g., [47, formula (4)]),

∂αξ e
−th(ξ) = e−th(ξ)

N∑
k=1

(−t)kHk(ξ),

where Hk(ξ) is a sum of products of partial derivatives of the function h(ξ) satisfying
|Hk(ξ)| ≤ C(1 + |ξ|k). We prove the following inequality by induction in N ∈ N+,∣∣∂αξ e−th(ξ)

∣∣ ≤ Ce−th(ξ)
∑

k− ℓ
2
≤N

2

tk
(
1 + |ξ|ℓ

)
.

For N = 1, by straightforward calculation and properties of function h(ξ),∣∣∂ξje−th(ξ)
∣∣ ≤ e−th(ξ)t|∂ξjh(ξ)| ≤ Ce−th(ξ)t (1 + |ξ|) .

We show the induction step for N + 1,∣∣∂ξj∂αξ e−th(ξ)
∣∣ ≤ t

∣∣∂ξjh(ξ)∣∣ ∣∣∂αξ e−th(ξ)
∣∣+ ∣∣∣∣∣e−th(ξ)

N∑
k=1

(−t)k∂ξjHk(ξ)

∣∣∣∣∣
≤ Ct|ξ|e−th(ξ)

∑
k− ℓ

2
≤N

2

tk
(
1 + |ξ|ℓ

)
+ Ce−th(ξ)

∑
k− ℓ

2
≤N

2

tk
(
1 + |ξ|ℓ

)
≤ Ce−th(ξ)

∑
k− ℓ

2
≤N+1

2

tk
(
1 + |ξ|ℓ

)
,

which holds true because |∂ξjHk(ξ)| satisfies the same estimate as |Hk(ξ)| by the
properties of function h(ξ), and k + 1− (ℓ+ 1)/2 ≤ (N + 1)/2.

We group coefficients tk and |ξ|ℓ in the following way: tk|ξ|ℓtk−ℓ/2|
√
tξ|ℓ. Thus, by

the assumption t ≥ 1 and induction, we have tk−ℓ/2 ≤ tN/2. We obtain an estimate

|∂αξ µ̂A(t)| ≤ Ct
N
2 P (|

√
tξ|)e−t|ξ|2+At

|ξ|2

1+|ξ|2 ,

where P (s) is a polynomial of degree N . By the same inequality as in the case N = 0

and properties of the exponential function,

|∂αξ µ̂A(t)| ≤ t
N
2 P (|

√
tξ|)e−t(1−A)|ξ|2 ≤ Ct

N
2 e−δt|ξ|2 , (4.11)

for some δ ∈ (0, 1 − A). Calculating the L2-norm of both sides of inequality (4.11)
we obtain the result.
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Lemma 4.13. Assume that A ∈ [0, 1). For every p ∈ [1,∞] there exists a constant
C > 0 such that

∥SA(t)v0∥p ≤ C∥v0∥p,

for all t ≥ 0 and all v0 ∈ Lp(Rd).

Proof. For t ∈ [0, 1] this is an immediate consequence of Lemma 4.8. For t ≥ 1,
function µA(t) is a Schwartz function in the variable ξ, and thus in the variable x.
Therefore, by the properties of the Fourier transform, action of the operator SA(t)

on the function v0 can be expressed as a convolution with the function µA(t), and by
the Young inequality,

∥SA(t)v0∥p = ∥µA(t) ∗ v0∥p ≤ ∥µA(t)∥1∥v0∥p.

In order to estimate ∥µA(t)∥1 we use Lemma 4.10, Lemma 4.11 and Lemma 4.12
with N > d/2 to obtain

∥µA(t)∥1 ≤ C∥µ̂A(t)∥
1− d

2N
2 ∥DN µ̂A(t)∥

d
2N
2

≤ C∥µ̂A(t)∥
1− d

2N
2

∑
|α|=N

∥∂αµ̂A(t)∥22

 d
4N

≤ C
(
t−

d
4

)1− d
2N
(
tN− d

2

) d
4N

= C

for all t ≥ 1.

Proof of Theorem 4.9. We begin with inequality (4.9) taking ε ∈ (A, 1). The follow-
ing formula can be justified on the level of Fourier transform, thus by the standard
heat semigroup estimates (see Lemma 2.2),

∥SA(t)v0∥p = ∥e(1−ε)t∆(eεt∆−tA∆K∗v0)∥p ≤ Ct−
d
2(

1
q
− 1

p)∥eεt∆−tA∆K∗v0∥q,

where constant C > 0 depends on ε but not on t > 0. Now we substitute t̃ = εt to
obtain tA = t̃(A/ε) = t̃Ã, where 0 < Ã < 1. Thus, by Lemma 4.13,

∥SA(t)v0∥p ≤ Ct−
d
2(

1
q
− 1

p)∥et̃∆−t̃Ã∆K∗v0∥q ≤ Ct−
d
2(

1
q
− 1

p)∥v0∥q.

Using the formula
∇SA(t)v0 = ∇e(1−ε)t∆(eεt∆−tA∆K∗v0),

we prove analogously inequality (4.10).
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Remark 4.14. The Lp-Lq estimates (4.9)-(4.10) of the semigroup {SA(t)}t≥0 hold true
for A < 0 as well. They can be proved by the same reasoning as above using the
obvious inequality

e
−t

(
|ξ|2−A

|ξ|2

1+|ξ|2

)
≤ e−t|ξ|2 for each A < 0.

Remark 4.15. For the completeness of this work, we notice that a constant solution
A = 1 is linearly stable in L2(Rd). Indeed, since e−t(|ξ|2−|ξ|2/(1+|ξ|2)) ≤ 1 for all ξ ∈ Rd

and t ≥ 0, by the Plancherel formula and Hölder inequality we obtain

∥S1(t)v0∥2 = ∥µ̂1(t)v̂0∥2 ≤ ∥µ̂1(t)∥∞∥v̂0∥2 ≤ ∥v0∥2

for all v0 ∈ L2(Rd). We skip a discussion of the stability of this constant solution for
p ̸= 2.
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Appendix A

Numerical results

A.1 Stationary solutions from Remark 3.16

Due to the difficulty of obtaining the inverse function g−1
m in Remark 3.16 directly,

we proceed as follows. Let C1 = 2−2/mM2/m and C2 = 21−m/2M2/m−1. We can
represent solution UM as a parametric function (x, UM(x)) ∈ R2, with x ∈ R satisfying
|C2x| ≤ 2F1(1/2, 1/m; 3/2; 1). For fixed x, using the inverse function theorem, we
obtain

(x, UM(x)) =

(
x,

C1

g′m(g
−1
m (C2x))

)
=

(
gm(w)

C2

,
C1

g′m(w)

)
,

where w ∈ [−1, 1] satisfy gm(w) = C2x.
We approximate the solution by calculating values in these points for certain w,

and visualize it by connecting them. Below, we provide an implementation of this
approach, where the parameter n is responsible for the accuracy of the approximation
(the higher – the better).

SteadyStateList[m_, M_, n_] := Module[
{$gm, $dgm, $C1, $C2, $S, $R, $T, $x},

(*definition of hypergeometric function*)
$gm[w_, m] = w*Hypergeometric2F1[0.5, 1/m, 1.5, w^2];
$dgm[w_] = D[$gm[w, m], w];

(*definition of scaling constants*)
$C1 = 4^(-1/m) M^(2/m);
$C2 = 2^((-2 + m)/m) M^(-1 + 2/m);
$S = $C1/$dgm[0];
$R = $gm[1, m]/$C2;

(*definition of point representation*)
$x = Join[{-1}, Table[-(1 - w/n)^(m - 1), {w, n}],

61
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62 Appendix A. Numerical results

Table[(w/n)^(m - 1), {w, n}]];
$T = Table@Evaluate[{$gm[w, m]/$C2, $C1/$dgm[w]}, {w, $x}];
$T
]

A.2 Stationary solutions from Subsection 3.2.4

The following code is a direct application of the procedure described in Subsec-
tion 3.2.4.

SteadyState[n_, k_,M_] := Module[
{l, c, X, v, System, Restrictions, Solutions, cS, RS, XS, u},

(*definition of function v*)
l = k/2;
c = ReplacePart[Table[Symbol["c" <> ToString@(2*i)], {i, l}], l -> M];
X = Table[R^(2*i) - x^(2*i), {i, l}];
v[x] = 1/(2*l*(n + 1))*c.X;

(*computation*)
System = Table[Equal[c[[i]],

Integrate[v[x]^n*x^(2*l - 2*i), {x, -R, R}]], {i, l}];
Restrictions = Table[Greater[c[[i]], 0], {i, l - 1}];
Solutions = NSolve[Join[System, Restrictions], Reals];
cS = Join[(c[[1 ;; (l - 1)]] /. Solutions)[[1]], {1}];
RS = (R /. Solutions)[[1]];
XS = Table[RS^(2*i) - x^(2*i), {i, l}];

(*result and validation*)
{u[x] = (1/(2*l*(n + 1))*cS.XS)^n*Boole[Abs[x] <= RS],

Integrate[u[x], {x, -RS, RS}]}
]
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