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Streszczenie

Przedmiotem niniejszej rozprawy jest model spaceru losowego w rzadkim losowym środowi-
sku (RWSRE). Rozważamy cząsteczkę wykonującą prosty spacer losowy na osi liczb całko-
witych. Porusza się ona symetrycznie za wyjątkiem pewnych punktów, wyznaczonych przez
dwustronny proces odnowy, w których kładziemy losowy dryf. Innymi słowy, środowisko
podzielone jest na bloki losowej długości; wewnątrz bloków cząsteczka wykonuje prosty syme-
tryczny spacer losowy, zaś na ich krańcach występuje losowy dryf. RWSRE może być więc
uważany za model pośredni między dwoma znanymi modelami: klasycznym, prostym syme-
trycznym spacerem losowym (SSRW) oraz spacerem losowym w losowym środowisku zadanym
przez ciąg niezależnych, jednakowo rozłożonych zmiennych (RWRE). W zależności od rozkładu
środowiska, RWSRE może posiadać cechy typowe albo dla SSRW, albo dla RWRE.

Jednym z celów pracy jest zbadanie, jak ta dychotomia przejawia się w granicznym za-
chowaniu spaceru. Pierwsza część rozprawy dotyczy twierdzeń granicznych typu quenched
dla pozycji spaceru oraz czasów pierwszego przejścia. W pierwszej kolejności przedstawiamy
mocne centralne twierdzenie graniczne typu quenched dla pozycji spaceru, uogólniając w ten
sposób wyniki znane dla modelu RWRE. Następnie rozważamy przypadek, w którym rzad-
kość środowiska ma dominujący wpływ na graniczne zachowanie spaceru i przedstawiamy
słabe twierdzenia graniczne typu quenched dla czasów pierwszego przejścia. W tym przypadku
RWSRE przejawia cechy nieobserwowane dla RWRE.

Ostatnia część rozprawy dotyczy maksymalnych czasów lokalnych spaceru, tj. czasu, jaki
cząsteczka spędza w swoich ulubionych punktach. Przedstawiamy twierdzenia graniczne typu
annealed dla ciągu maksymalnych czasów lokalnych w dwóch przypadkach: dominującego
dryfu i dominującej rzadkości. W pierwszym przypadku uzyskane wyniki mogą być uznane
za uogólnienie twierdzeń znanych dla RWRE. W drugim przypadku, z powodu obecności
w środowisku długich bloków, na których cząsteczka porusza się symetrycznie, natura jej
ulubionych punktów jest znacząco inna.
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Abstract

The subject of this thesis is a stochastic model called a random walk in a sparse random
environment (RWSRE). We consider a single particle performing a nearest-neighbour random
walk on the set of integers. The movement is symmetric apart from some sites marked by
a two-sided renewal process, in which random drifts are imposed. That is, the environment
is split into blocks of random lengths; within each block, the particle performs a symmetric
random walk, while at the endpoints a random drift occurs. Therefore the RWSRE may be
considered as being in-between two well-known models: a classic, simple symmetric random
walk (SSRW) and a random walk in i.i.d. random environment (RWRE), and, depending on
the distribution of the environment, it may manifest properties resembling one or the other.

One of the goals of the thesis is to examine how this dichotomy may be observed in the
limiting behaviour of the walk. The first part of the thesis concerns quenched limit theorems
for the position of the walk and the sequence of first passage times. We begin by presenting
the case in which the strong quenched central limit theorem holds for the position of the walk,
generalizing results known for the RWRE. Next we focus on the case in which the sparsity
of the environment plays a dominant role in governing the limiting behaviour of the RWSRE
and present weak quenched limit theorems for the sequence of first passage times. In this case
the RWSRE exhibits properties not observed for the RWRE.

In the last part of the thesis we examine the sequence of maximal local times of the walk,
i.e. the amount of time spent by the particle in its favourite sites. We present the annealed
limit theorems for this sequence in two cases: the case of dominating drift and the case of
dominating sparsity. In the former, we obtain results that may be seen as a generalization of
those known for the RWRE. In the latter, the nature of the favourite sites is different because
of the presence of long blocks on which the walk is symmetric.
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Chapter 1

Introduction

One of the most classic stochastic processes is a simple random walk on the set of integers.
In this model, a particle moves along the axis, every unit time jumping with fixed probability
p to its right neighbour and with probability 1 − p to the left one. The process is a time
and space homogeneous Markov chain, that is its increments are independent of the past
and the transitions do not depend on time nor the current position of the process. It is well
known that the walk is recurrent if and only if it is symmetric, i.e. p = 1/2; its asymptotic
properties follow from classic results such as the strong law of large numbers, central limit
theorem or Cramér’s theorem. However, the homogeneity present in this model is not always
desired. In many applications one would like to consider obstacles in the environment that
would change the behaviour of the particle in some, possibly random, sites. As it turns out,
even a small perturbation in the environment affects the asymptotic properties of the walk. In
1981, Harrison and Shepp [16] described the behaviour of the simple symmetric random walk
in a slightly disturbed environment, replacing only the probability of passing from 0 to 1 by
some fixed p0 ∈ (0, 1). They observed that the scaling limit is not the Brownian motion, as is
the case in homogeneous environment, but the skew Brownian motion.

Another way of perturbing the environment was proposed in the seventies by Solomon [28].
In his model, the drift occurs at every site and is chosen randomly with some distribution P.
The random walk in a random environment (RWRE) defined this way has been well studied
since. Various authors described how the choice of P determines such properties of the walk as
its transience and asymptotic speed [28, 1], limit theorems [15, 18], or large deviations [9, 5].
As it transpires, the randomness of the environment leads to phenomena not observed in the
classic model. For example, the walk may be sub-ballistic, i.e. transient, but with sub-linear
speed. Moreover, under suitable assumptions on P, the position of the walk no longer satisfies
a central limit theorem. Its scaling limit is closely related to the limit of a sequence of first
passage times, which lies in the domain of attraction of a stable law, with the parameters
and scaling determined by the distribution of the environment. In this case the rate of large
deviations is of polynomial order, in opposition to the classic, exponential rate present under
the assumptions of Cramér’s theorem. This change in the behaviour of the particle is caused,
roughly speaking, by the traps occurring in the environment, i.e. sites with unfavourable drift

1
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2 Chapter 1. Introduction

that have impact on the movement of the particle which is strong enough to be seen in the
macroscopic scale of the limit theorems.

(a) Simple symmetric random walk (b) Random walk in a random environment

(c) Random walk in a sparse random environ-
ment

(d) Random walk in a sparse random environ-
ment

Figure 1.0.1: Exemplary trajectories of random walks. Horizontal lines indicate sites with
random drift; the darker the line, the stronger the drift to −∞.

Solomon’s model may be also seen as, in a way, homogeneous, since the drifts are usually
assumed to be independent and identically distributed, or at least stationary and ergodic. It
is therefore natural to consider slightly different construction of the environment, in which the
symmetric movement of the particle would be perturbed only in some sparsely located sites.
The model we intend to study was proposed first in [20] by Matzavinos, Rotershtein, and Seol,
and is called a random walk in a sparse random environment (RWSRE). Instead of putting
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3

random drift at every site in the environment, we begin by marking a subset of integers by the
positions of a renewal process. The random drift is imposed only in the marked sites, and the
particle moves symmetrically everywhere else. This model may be seen as an interpolation
between the classic symmetric random walk and Solomon’s random walk in a random environ-
ment, or as a generalization of the latter. The asymptotic properties of the walk are driven not
only by the drift, but also by the sparsity, i.e. the lengths of intervals on which the movement is
symmetric. Therefore, we may expect that, depending on the interplay between the drift and
the sparsity, RWSRE should manifest properties resembling either a simple symmetric random
walk, or RWRE. Indeed, this dichotomy was already observed by Buraczewski et al. in [6, 7] in
the context of annealed limit theorems for the transient RWSRE. Under suitable assumptions,
the traps in the environment that have the largest impact on the movement of the particle are
of the same nature as those appearing in RWRE, i.e. are caused by unfavourable drift. In such
setting, the sequence of first passage times lies in the domain of attraction of a stable law,
whose parameters, like in RWRE, are determined by the distribution of the drift. However,
under different assumptions, ones that favour long distances between marked sites, the drift
no longer plays the dominant role in governing the movement of the particle. In most sites it
behaves like a simple symmetric random walk, and this change is reflected in the shape of limit
theorems. The limiting variable may be once again stable, but its appearance, as well as its
parameters, is caused by the presence of long blocks on which the walk is symmetric. When
the environment is strongly sparse, the limiting variable is no longer stable; an additional term
appears that comes from the random movement of the particle in the unmarked sites.

One of our objectives will be to describe how this phenomenon is reflected in the quenched
limit theorems, i.e. to investigate asymptotic behaviour of the walk in randomly chosen, fixed
environment. The first result, stated in Theorem 3.2.1, is a strong quenched central limit
theorem for the position of the walk. By adapting the techniques used previously for the
RWRE, we show that under relatively strong assumptions, for almost every environment,
properly scaled position of the walk converges in distribution to the standard normal variable.
Then, in Chapter 4, we pass to the setting of dominating sparsity, in particular strong sparsity,
in which the limiting behaviour of RWSRE is significantly different from that observed for
RWRE. In this case the scaling limit of the first passage times is determined by asymptotic
properties of the renewal process that was used to mark the points with drifts, as well as the
random movement of the particle in the blocks between them, while the influence of the drifts
is negligible. Moreover, the limit theorem is no longer strong, i.e. the scaled sequence of first
passage times does not converge in distribution for almost every environment. Instead, one
should consider the weak limit of the sequence (µn,ω)n∈N given by

µn,ω(·) = Pω [(Tn − EωTn)/κn ∈ · ]

for appropriate scaling κn, where Tn is the time by which RWSRE reaches site n, Pω is the
distribution of the walk in fixed environment ω, and Eω is the expected value with respect to
Pω. Since the environment is random, (µn,ω)n∈N is a sequence of random measures and as such
may have a weak limit. The main result of Chapter 4 states that, under suitable assumptions

15:27387



4 Chapter 1. Introduction

on the distribution of the environment,

µn,ω ⇒ G(N),

where⇒ denotes weak convergence. Here N is a Poisson point process with intensity determ-
ined by the renewal process used to mark the sites with drift (that is, the presence of N arises
from the sparsity of the environment), while G is a measurable map defined with the help of
the Brownian motion (that is, G comes from the limiting behaviour of a simple symmetric
random walk). Precise results are stated in Theorems 4.2.1, 4.2.2, and 4.2.3.

Another object of our interest will be the favourite sites of a transient RWSRE. More
precisely, we will study the annealed limit theorems for the maximal local times, i.e. the
amount of time spent by the particle in its favourite site. A natural presumption is that
this maximal time should be obtained at a site with strong, unfavourable drift that forces
the particle to make many attempts to cross the site. As we will see, this is indeed true for
RWRE and RWSRE under suitable assumptions on the distribution of the environment. In
the complementary case, however, when it is the sparsity that governs the limiting behaviour
of the walk, the maximal local time is obtained when the particle crosses a particularly long
block between the marked sites. As can be seen in Theorems 5.2.1 and 5.2.2, in both cases
the limiting distribution is Fréchet, that is, for every x > 0,

lim
n→∞

P
[
max
k6n

Lk(n)/κn 6 x

]
= e−cx

−γ
,

where P denotes the annealed measure and Lk(n) is the number of times the walk visits site k
before reaching n. However, the scaling sequence κn and the parameter γ depend entirely either
on the distribution of drifts, or on the renewal process used to mark the sites. Interestingly,
this change of regime – between the domination of drift and sparsity – occurs under different
assumptions than for the first passage times. The reason, as may be seen from the arguments
used in the two cases, is the fact that first passage times and local times of a simple symmetric
random walk are asymptotically of different orders, while for a RWRE they are comparable.

The dissertation is organised as follows: in the remaining part of this chapter we define our
model formally and provide a summary of notation used throughout the thesis. Elementary
properties of the model are described in Chapter 2. Chapters 3 and 4 concern quenched limit
theorems for the position of the walk and first passage times, and in Chapter 5 we present
annealed limit theorems for maximal local times.

16:91023



1.1. Random walk in a (sparse) random environment 5

1.1 Random walk in a (sparse) random environment

Let Ω = (0, 1)Z and let F be the corresponding cylindrical σ-algebra. A random element
ω = (ωn)n∈Z of (Ω,F) distributed according to a probability measure P is called a random
environment. Let X = ZN be the set of possible paths of a random walk on Z, with corres-
ponding cylindrical σ-algebra G. Then any ω ∈ Ω and i ∈ Z gives rise to a measure Piω on X
such that Piω[X0 = i] = 1 and

Piω [Xn+1 = j|Xn = k] =


ωk if j = k + 1,

1− ωk if j = k − 1,

0 otherwise,

(1.1.1)

where X = (Xn)n∈N ∈ X . That is, under Piω, X is a nearest-neighbour random walk starting
from i with transition probabilities given by the sequence ω. In particular, it is a time-
homogeneous Markov chain.

Since the environment itself is random, it is natural to consider a measure Pi on (Ω ×
X ,F ⊗ G) such that

Pi [F ×G] =

∫
F

Piω[G] P(dω) (1.1.2)

for any F ∈ F , G ∈ G. We shall write Pω = P0
ω and P = P0. Observe that under P the walk

X may exhibit a long-time dependencies and thus no longer be a Markov chain.
The process X defined above is called a random walk in a random environment and was

introduced by Solomon [28]. A well-studied case is ω being an i.i.d. sequence, which gives rise
to a random walk in i.i.d. random environment.

We will consider a specific choice of the environment that was introduced first by Matzavi-
nos, Roitershtein, and Seol in [20]. Consider an i.i.d. sequence ((ξk, λk))k∈Z ∈ (N+ × (0, 1))Z

and define, for any n, k ∈ Z,

Sn =


∑n

j=1 ξj , n > 0,

0, n = 0,

−
∑0

j=n+1 ξj , n < 0;

ωk =

{
λn if k = Sn for some n ∈ Z,
1/2 otherwise.

(1.1.3)

The random walk evolving in an environment ω defined by (1.1.3) is called a random walk in
a sparse random environment. We shall refer to the random sites Sn as marked points and
write (ξ, λ) for a generic element of the sequence ((ξk, λk))k∈Z.

The term sparse refers to the fact that, unless ξ = 1 almost surely, the random drift is
put only in the marked sites, while in the blocks between them, whose lengths are given by
the sequence (ξk)k∈Z, the particle performs a simple symmetric random walk. In other words,
the impurities are put sparsely on Z. However, if ξ = 1 almost surely, then we obtain once
again a random walk in i.i.d. environment. Therefore the RWSRE model may be seen as an
interpolation between a simple symmetric random walk and a walk in i.i.d. environment, or
as a generalization of the latter.

17:10843



6 Chapter 1. Introduction

S0 = 0 S1 = ξ1S−1 = −ξ0

λ01− λ0 λ11− λ1

1/21/2 Sn = ξ1 + · · ·+ ξn

λn1− λn

1/21/2

Figure 1.1.1: Exemplary realization of the sparse random environment. Sites with random
drift are marked in blue. Under Pω, the walk obeys transition rules indicated by arrows.

1.2 Notation and basic definitions

We provide a list of definitions and notation we shall use throughout the thesis.

• For p ∈ (0, 1), by Geo(p) we denote the geometric distribution with parameter p sup-
ported on {0, 1, . . . }, i.e. if G ∼ Geo(p), then

P[G = k] = p(1− p)k for k = 0, 1, 2, . . .

• For a topological space Z byM1(Z) we denote the space of probability measures on Z
with the Borel σ-algebra. For our purposes we will take Z to be an Euclidean space or
its subspace; M1(Z) equipped with the Prokhorov distance is then a separable metric
space which inherits completeness from Z. Similarly, byMp(Z) we will denote the space
of point measures on Z, equipped with the topology of vague convergence.

• For two functions f, g : R→ R, we write f(t) ∼ g(t) whenever f(t)/g(t)→ 1 as t→∞.
A function ` is slowly varying at infinity if `(ct) ∼ `(t) as t→∞ for any constant c > 0.

• For two numbers a, b we denote a ∧ b := min(a, b) and a ∨ b := max(a, b).

We will frequently make use of the following notation given in terms of the variables
((ξk, λk))k∈Z: for i, j, k ∈ Z,

ρk =
1− λk
λk

;

Πi,j =

j∏
k=i

ρk with the convention that an empty product equals 1;

Ri,j =

j∑
k=i

ξkΠi,k−1, Ri =
∞∑
k=i

ξkΠi,k−1, R̄i =
∞∑
k=i

Πi,k−1;

Wi,j =

j∑
k=i

ξkΠk,j , Wj =

j∑
k=−∞

ξkΠk,j .

18:29138



Chapter 2

Random walk in a sparse random
environment

In this chapter we present basic properties of RWSRE, in particular invoke known results on
the transience criteria and the asymptotic speed of the walk. We also study quenched mean
and variance of the hitting times.

2.1 Some properties of the simple symmetric random walk

In this section we present some facts concerning the simple symmetric random walk which will
be used repeatedly in the next chapters.

Let, for the use of the next lemma, X̃ = (X̃n)n∈N denote a simple symmetric random walk
on Z. Let Pi be the probability on the underlying probability space conditioned on the event
{X̃0 = i}, and let Ei denote the corresponding expected value. Let T̃n = inf{k ∈ N : X̃k = n}
be the first passage time of X̃. It is well known that every T̃n is finite a.s. The next lemma
gathers facts on X̃ that will be of use to us.

Lemma 2.1.1. The following hold for any 0 < i < N :

Pi[T̃N < T̃0] =
i

N
, (2.1.1)

Ei[T̃N ∧ T̃0] = i(N − i). (2.1.2)

Ei
[
T̃N 1

T̃N<T̃0

]
=
i(N − i)(N + i)

3N
, (2.1.3)

Ei
[
T̃0 1T̃0<T̃N

]
=
i(2N − i)(N − i)

3N
, (2.1.4)

Ei
[
(T̃N ∧ T̃0)2

]
=

1

3

(
i4 − 2i3N + 2i2 + iN3 − 2iN

)
. (2.1.5)

Proof. The first two relations are well-known results on the gambler’s ruin problem and can be
obtained by solving recursive equations or by applying Doob’s stopping theorem to martingales
X̃n and X̃2

n − n.

7
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8 Chapter 2. Random walk in a sparse random environment

To show (2.1.3), consider a Doob transform of X̃ with the harmonic function h(i) = i/N .
That is, consider a Markov chain on {0, 1, . . . , N} with transition probabilities given by

P (i, j) =


i+1
2i , j = i+ 1,
i−1
2i , j = i− 1,

0 otherwise

for i ∈ {1, . . . , N − 1} and P (N,N) = 1. Since h(i) = Pi[T̃N < T̃0], this Markov chain has the
same distribution as the process X̃ conditioned on {T̃N < T̃0}, stopped upon reaching site N .
Therefore the sequence ai := Ei[T̃N |T̃N < T̃0] satisfies

ai = 1 +
i− 1

2i
ai−1 +

i+ 1

2i
ai+1, aN = 0.

Solving the equation gives ai = (N + i)(N − i)/3, which implies (2.1.3). Now (2.1.4) follows
by symmetry.

To obtain (2.1.5), we may apply Doob’s stopping theorem to the martingale Mn = X̃4
n −

6nX̃2
n + 3n2 + 2n. For T̃ = T̃0 ∧ T̃N we get

i4 = EiM0 = EiM
T̃

= N4Pi[T̃N < T̃0]− 6N2Ei[T̃ 1
T̃N<T̃0

] + 3EiT̃ 2 + 2EiT̃ .

Applying the above formulae and solving for EiT̃ 2 gives (2.1.5).

2.2 Basic properties of the random walk in a sparse random
environment

2.2.1 Estimates of certain processes related to the environment

Let, for k ∈ Z,

ρk =
1− λk
λk

.

Observe that (ρk)k∈Z is, under P, a sequence of i.i.d. random variables. We shall write ρ for
its generic element. Let, for integers i 6 j,

Πi,j =

j∏
k=i

ρk, Ri,j =

j∑
k=i

ξkΠi,k−1, Wi,j =

j∑
k=i

ξkΠk,j , (2.2.1)

with the convention that Πi,j = 1 for i > j. We will also make use of the limits

Ri = lim
j→∞

Ri,j =

∞∑
k=i

ξkΠi,k−1, Wj = lim
i→−∞

Wi,j =

j∑
k=−∞

ξkΠk,j . (2.2.2)
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2.2. Basic properties of RWSRE 9

Note that if E log ρ < 0 and E log ξ <∞, both series are convergent almost surely as one can
see by a straightforward application of the law of large numbers and the Borel-Cantelli lemma
(see [4, Theorem 2.1.3]). The sequences (Ri)i∈Z and (Wj)j∈Z obey the recursive formulae

Ri = ξi + ρiRi+1 and Wj = ρjξj + ρjWj−1. (2.2.3)

We can therefore invoke the proof of [4, Lemma 2.3.1] to infer the following result on the
existence of moments of Ri’s and Wj ’s. In what follows we write R (respectively W ) for
a generic element of (Ri)i∈Z (respectively (Wj)j∈Z).

Lemma 2.2.1. Let η > 0. If Eρη < 1, Eρηξη < ∞, and Eξη < ∞, then ERη and EW η are
both finite.

2.2.2 Recurrence, transience, and the speed of the walk

Let X = (Xn)n∈N be a random walk in a sparse random environment. For any k ∈ Z, let

Tk = inf{n : Xn = k}. (2.2.4)

We shall refer to Tk’s as the hitting or first passage times. The analysis of the sequence
T = (Tk)k∈Z gives insight into relevant properties of the RWSRE. We will consider first the
hitting times along the marked sites, i.e. the sequence (TSk)k∈Z.

As it turns out, the variables Ri,j defined in (2.2.1) may be used to express exit probabilities
of the walk.

Lemma 2.2.2. For any i < k < j,

PSkω [TSi > TSj ] =
Ri+1,k

Ri+1,j
, PSkω [TSi < TSj ] = Πi+1,k

Rk+1,j

Ri+1,j
. (2.2.5)

Proof. Obtaining the formulae (2.2.5) for any fixed environment ω is a matter of solving
a simple recursive equation. For fixed i < j consider

pk = PSkω
[
TSi > TSj

]
.

Then pi = 0, pj = 1. Conditioning on the first step of the walk and using Lemma 2.1.1, we
obtain

pk = λkP
Sk+1
ω

[
TSi > TSj

]
+ (1− λk)PSk−1

ω

[
TSi > TSj

]
= λk

(
pk+1

ξk+1
+
ξk+1 − 1

ξk+1
pk

)
+ (1− λk)

(
pk−1

ξk
+
ξk − 1

ξk
pk

)
Solving this equation gives (2.2.5).

In view of the asymptotic properties of the sequence (R1,n)n∈N described in Section 2.2.1,
Lemma 2.2.2 may be used to determine the conditions under which RWSRE is recurrent or
transient. The following is Theorem 3.1 from [20].
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10 Chapter 2. Random walk in a sparse random environment

Proposition 2.2.3. Assume that E log ξ <∞. Then the following holds P-almost surely:

• if E log ρ < 0, then limn→∞Xn =∞;

• if E log ρ > 0, then limn→∞Xn = −∞;

• if E log ρ = 0, then lim supn→∞Xn =∞, lim infn→∞Xn = −∞.

From now on we will consider only RWSRE that is transient to the right, therefore we will
always assume

E log ρ ∈ [−∞, 0) and E log ξ <∞. (2.2.6)

Note that the first condition in (2.2.6) excludes the degenerate case ρ = 1 a.s. in which X is
a simple symmetric random walk. Under (2.2.6), the RWSRE satisfies a strong law of large
numbers. The following result was first stated in [20] under more strict conditions, and then
generalised in [7].

Proposition 2.2.4. Assume that conditions (2.2.6) hold. Then

Xn/n→ v, Tn/n→ 1/v P− a.s., (2.2.7)

where

v =


(1−Eρ)Eξ

(1−Eρ)Eξ2+2EρξEξ
if Eρ < 1, Eρξ <∞, Eξ2 <∞;

0 otherwise,

with the convention 1/0 =∞.

As we will see in Lemma 2.3.1, the conditions under which v is non-zero guarantee that
ETS1 < ∞. The main point of the proof of Proposition 2.2.4 is an application of the ergodic
theorem to obtain the strong law of large numbers for TSn/n, which further implies the con-
vergence (2.2.7). For the full proof, we refer the reader to [20, Theorem 3.3] or [7, Proposition
2.1].

2.3 Hitting times of a random walk in a sparse random envir-
onment

In this section we examine the structure of the sequence of hitting times of a transient RWSRE
under the quenched measure Pω.

Let Tk = TSk − TSk−1
be the time that the particle needs to hit k’th marked point Sk

after reaching Sk−1. Note that Tk’s are independent under Pω for any fixed ω, but may
be dependent under P. The next lemma gives expressions on moments of Tk in the case of
a transient walk.
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2.3. Hitting times of RWSRE 11

Lemma 2.3.1. Assume that E log ρ < 0,E log ξ <∞. Then for any k ∈ Z, P-almost surely,

EωTk = ξ2
k + 2ξkWk−1, (2.3.1)

VarωTk = 8ξk
∑
i<k

(
ξ2
iWi−1 + ξiW

2
i−1 +

1

3
ξ3
i

)
Πi,k−1

+
2

3
ξ4
k −

2

3
ξ2
k −

4

3
ξkWk−1 +

8

3
ξ3
kWk−1 + 4ξ2

kW
2
k−1.

(2.3.2)

Proof. Observe that assumptions of the lemma guarantee that all the above series are conver-
gent P-almost surely.

Denote by T (i, j) the time needed to reach j when starting from i. Then Tk+1 has the
same distribution as T (Sk, Sk+1), which may be decomposed as follows: first, we consider the
first step of the walk, i.e.

T (Sk, Sk+1)
d
= 1 + 1X1=Sk+1 T (Sk + 1, Sk+1) + 1X1=Sk−1 T (Sk − 1, Sk+1),

for T (Sk + 1, Sk+1) and T (Sk − 1, Sk+1) independent of X1.
Next, we decompose T (Sk + 1, Sk+1) with respect to the point by which the walk exits

interval [Sk, Sk+1]. Let TLk = T (Sk + 1, Sk), T
R
k = T (Sk + 1, Sk+1), then

T (Sk + 1, Sk+1)
d
= 1TLk <T

R
k

(TLk + T ′(Sk, Sk+1)) + 1TRk <T
L
k
TRk

= TLk ∧ TRk + 1TLk <T
R
k
T ′(Sk, Sk+1)

where T ′(Sk, Sk+1) is a copy of T (Sk, Sk+1), independent of T (Sk + 1, Sk+1), TLk , and T
R
k .

Similarly, with TRk−1 = T (Sk − 1, Sk) and TLk−1 = T (Sk − 1, Sk−1),

T (Sk − 1, Sk+1)
d
= TLk−1 ∧ TRk−1

+ 1TLk−1<T
R
k−1

T (Sk−1, Sk)

+ T ′′(Sk, Sk+1).

Denote µk = EωTk. Using (2.1.1) and (2.1.2) we get

EωT (Sk + 1, Sk+1) = Eω[TLk ∧ TRk ] + Pω[TLk < TRk ]EωT (Sk, Sk+1)

= ξk+1 − 1 +
ξk+1 − 1

ξk+1
µk+1,

EωT (Sk − 1, Sk+1) = Eω[TLk−1 ∧ TRk−1] + Pω[TLk−1 < TRk−1]EωT (Sk−1, Sk) + EωT (Sk, Sk+1)

= ξk − 1 +
1

ξk
µk + µk+1,

which leads to

µk+1 = λk

(
ξk+1 +

ξk+1 − 1

ξk+1
µk+1

)
+ (1− λk)

(
ξk +

1

ξk
µk + µk+1

)
.
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12 Chapter 2. Random walk in a sparse random environment

Assume we have verified that µk < ∞ for every k ∈ Z. Then the above formula may be
rewritten as

µk+1

ξk+1
= ρk

µk
ξk

+ ρkξk + ξk+1. (2.3.3)

Iterating (2.3.3), we obtain

µk+1

ξk+1
=

k∑
i=−n

(ρiξi + ξi+1)Πi+1,k + Π−n,k
µ−n
ξ−n

, (2.3.4)

which gives
µk+1

ξk+1
=
∑
i6k

(ρiξi + ξi+1)Πi+1,k = ξk+1 + 2Wk,

if we may verify that Π−n,kµ−n/ξ−n → 0 as n→∞.
To show (2.3.1) formally, one may repeat the above calculation for the truncated times

Tk ∧M , for M > 0. One then sees that a sequence µMk = Eω[Tk ∧M ] satisfies

µMk+1

ξk+1
6 ρk

µMk
ξk

+ ρkξk + ξk+1 6
k∑

i=−n
(ρiξi + ξi+1)Πi+1,k + Π−n,kM.

Observe that the assumption E log ρ < 0 guarantees that Π−n,k → 0 P-almost surely. Therefore

µk+1 = lim
M→∞

µMk+1 6 ξ2
k+1 + 2ξk+1Wk,

P-almost surely. In particular, µk <∞ P-a.s., for every k ∈ Z, and (2.3.4) holds. This in turn
implies

µk+1 > ξ2
k+1 + 2ξk+1Wk

and ends the proof of (2.3.1).
Next, denote σk = EωT2

k. A similar calculation using Lemma 2.1.1 and relation (2.3.3)
gives

σk+1

ξk+1
= ρk

σk
ξk

+ fk+1, (2.3.5)

where

fk+1 =
1

3

(
ξ3
k+1 + ρkξ

3
k − 4ξk+1 − 4ρkξk

)
+

2

3

(
µk+1

ξk+1

(
−ξ2

k+1 + 1
)

+ ρk
µk
ξk

(
ξ2
k − 1

))
+

2µ2
k+1

ξk+1
.

Proceeding as before, we obtain (2.3.2).

Having obtained the exact formulae for the quenched mean and variance of the hitting
times, we may proceed as in the proof of Lemma 2.2.1 to show the following result:
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2.3. Hitting times of RWSRE 13

Corollary 2.3.2. If Eρ2 < 1, Eξ2ρ2 <∞, and Eξ4 <∞, then ET1 <∞ and E[VarωT1] <∞.

Observe that Tk can be decomposed into a sum of two parts: the time the particle, after
reaching Sk−1, but before it hits Sk, spends to the left of Sk−1, and the time it spends to the
right of Sk−1. For technical reasons that will become clear below, we divide the visits exactly
at point Sk−1 between these two sets depending on the direction from which the particle hit
Sk−1. To be precise, we define

Tlk =
∣∣{n ∈ (TSk−1

, TSk ] : Xn < Sk−1 or (Xn−1, Xn) = (Sk−1 − 1, Sk−1)
}∣∣ , (2.3.6)

i.e. Tlk is the sum of the time the particle spends in (−∞, Sk−1 − 1] and the number of steps
from Sk−1 − 1 to Sk−1. Similarly we define

Trk =
∣∣{n ∈ (TSk−1

, TSk ] : Sk−1 < Xn 6 Sk or (Xn−1, Xn) = (Sk−1 + 1, Sk−1)
}∣∣ . (2.3.7)

Thus we can write
Tk = TSk − TSk−1

= Tlk + Trk.

Observe that, given ω, the random variables {Tk}k∈N are independent under Pω, however for
fixed k, Tlk and Trk mutually depend on each other.

Lemma 2.3.3. Assume that E log ρ < 0,E log ξ <∞. Then for any k ∈ Z, P-almost surely,

EωTrk = ξ2
k, (2.3.8)

VarωTrk =
2

3

(
ξ4
k − ξ2

k

)
, (2.3.9)

EωTlk = 2ξkWk−1, (2.3.10)

VarωTlk = 8ξk
∑
i<k

(
ξiW

2
i−1 + ξ2

iWi−1 +
1

3
(ξ3
i − ξi)

)
Πi,k−1

+ 4ξ2
kW

2
k−1 + 4ξkWk−1.

(2.3.11)

Proof. Fix k ∈ Z. Observe that, under Pω, Trk+1 equals in distribution to the time it takes
a simple symmetric random walk on [0, ξk+1] with a reflecting barrier placed in 0 to reach ξk+1

for the first time when starting from 0. This is the reason we include into Trk+1 the visits at
Sk, but only those from Sk+1. Equivalently, it is the distribution of the time it takes a simple
symmetric random walk starting from 0 to reach −ξk+1 or ξk+1. Therefore (2.3.8) and (2.3.9)
follow from Lemma 2.1.1. Now, (2.3.10) follows from (2.3.1) and (2.3.8).

To examine the variance of Tlk+1, observe that we may express it as a sum of independent
copies of a variable Fk, which denotes the length of a single excursion to the left from Sk.
That is,

Tlk+1 =

Mk∑
m=0

Nm∑
j=1

Fk(j,m), (2.3.12)

where Mk, Nm’s and Fk(j,m)’s are independent under Pω; Mk is the number of times the
particle hit Sk from the right before it reached Sk+1, and Nm is the number of its excursions
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14 Chapter 2. Random walk in a sparse random environment

to the left between m’th and m + 1’st step from Sk to Sk + 1. Observe that Mk is geomet-
rically distributed; by (2.1.1), its parameter is 1/ξk+1. Moreover, Nm’s are also geometrically
distributed; since the probability of going left from Sk is 1− λk, we have Nm ∼ Geo(λk).

Recall that if SN =
∑N

i=1Xi for some random variable N and an i.i.d. sequence (Xn)n∈N
independent of N , then

VarSN = EN ·VarX1 + VarN · (EX1)2. (2.3.13)

The above formula together with (2.3.12) easily entails

VarωTlk+1 = ξk+1ρkVarωFk +
(
ξ2
k+1ρ

2
k + ξk+1ρk

)
(EωFk)

2

= ξk+1ρkEωF
2
k + ξ2

k+1ρ
2
k(EωFk)

2.

From here on we may proceed as in the proof of Lemma 2.3.1. Since Fk is the time of a single
excursion from Sk that begins with a step left, we have

Fk
d
= 1 + T (Sk − 1, Sk).

Decomposing T (Sk − 1, Sk) depending on the point by which the particle left the interval
[Sk−1, Sk], we obtain, with the help of Lemma 2.1.1,

EωT (Sk − 1, Sk) = ξk − 1 +
µk
ξk
,

EωT (Sk − 1, Sk)
2 = 1− 4

3
ξk +

1

3
ξ3
k +

2

3

(
ξkµk −

µk
ξk

)
+
σk
ξk
.

In particular,
EωFk = 2(ξk +Wk). (2.3.14)

Now, (2.3.11) may be obtained using Lemma 2.3.1 and relation (2.2.3).
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Chapter 3

Limit theorems for a random walk in
a sparse random environment

3.1 Limit theorems for a random walk in a sparse random en-
vironment: an overview

In this section we present an overview of known results concerning limiting behaviour of
transient RWSRE. Since a walk in i.i.d. random environment is a special case of RWSRE, it
is natural to first evoke limit theorems in this case.

3.1.1 Independent, identically distributed environment

Assume that E log ρ < 0 and let r : [0,∞)→ [0,∞] be defined as

r(x) = Eρx. (3.1.1)

We will assume that r is finite in some neighbourhood of 0. Observe that the function r is
convex. Moreover, r(0) = 1 and r′(0) = E log ρ < 0. This implies that if an α > 0 satisfying

r(α) = 1 (3.1.2)

exists, then it is unique. Moreover, r(x) < 1 for 0 < x < α and r(x) > 1 for x > α. It may
happen, however, that such α > 0 does not exist, since r may jump to +∞ before obtaining
value 1 or decrease to 0 if ρ 6 1 almost surely.

It turns out that the limit theorems for a walk in i.i.d. environment depend entirely on
the function r. If r(2) < 1, then under the annealed measure a CLT holds for the sequence of
hitting times, from which it is not difficult to deduce a CLT for the position of the walk (see
[22, Theorem 3.8]). Different behaviour appears if (3.1.2) holds for α ∈ (0, 2). It was shown
by Kesten et al. in [18] that in this case, under the annealed measure, the sequence of hitting
times lies in the domain of attraction of some α-stable variable Lα. The limit of (Xn)n∈N is
not Gaussian, but is closely related to this α-stable law. For example, if α ∈ (0, 1), then

lim
n→∞

P
[
Xn

nα
> x

]
= P

[
Lα < x−1/α

]
. (3.1.3)

15
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16 Chapter 3. Limit theorems for RWSRE

For the full statement, in particular the case α ∈ [1, 2), see the main Theorem in [18].
To describe the quenched limit theorems, observe that for any sequences an, bn, possibly

depending on ω,

µn,ω(·) = Pω

[
Tn − bn
an

∈ ·
]

is, under P, a random element ofM1(R), i.e. a random probability measure on R. Therefore
one can distinguish two types of limiting behaviour of (µn)n∈N. We will say that a strong
quenched limit theorem for T holds, if µn → µ almost surely inM1(R), that is for P-a.e. ω
the sequence of measures (µn,ω)n∈N converges to µ in the Prokhorov metric. We will say that
a weak quenched limit theorem for T holds, if µn ⇒ µ in M1(R), that is for any bounded,
continuous function f :M1(R)→ R we have Ef(µn)→ Ef(µ) as n→∞.

If r(2) < 1, then it may be shown that

lim
n→∞

Pω

[
Tn − EωTn

σ
√
n

6 t

]
→ Φ(t) P-a.s.,

for some constant σ, where Φ is a cumulative distribution function of a standard normal
variable. This fact is used in [15] by Goldsheid to deduce a strong quenched CLT for the
position of the walk. However, the quenched counterpart of (3.1.3) is more complex. As seen
from the results presented in [21, 24], in the case α < 2 there is no strong quenched limit
theorem for T . Indeed, it turns out that in this case one can find different strong quenched
limits for the hitting times along different subsequences. This in turn leads to the analysis of
T in the weak quenched setting. To this end, consider the mapping H :Mp((0,∞))→M1(R)

given as follows: for a point measure ζ =
∑

i>1 δxi , where (xi)i∈N+ is an arbitrary enumeration
of the points, define

H(ζ)(·) =

{
P
[∑

i>1 xi(τi − 1) ∈ ·
]

if
∑

i>1 x
2
i <∞,

δ0(·) otherwise,

where the probability is taken with respect to (τi)i∈N, a sequence of i.i.d., mean one exponential
random variables. Then the main result of [23] states that for α < 2,

Pω

[
Tn − EωTn

n1/α
∈ ·

]
⇒ H(N) (3.1.4)

inM1(R), where N is a Poisson point process on (0,∞) with intensity cNx−α−1dx for some
constant cN > 0. From this follows a quenched version of (3.1.3); namely, for α ∈ (0, 1), for
any x ∈ R,

Pω

[
Xn

nα
< x

]
⇒ H(N)(x−1/α,∞). (3.1.5)

The limiting variables in the case α ∈ [1, 2) are more complex; we refer the reader to [23,
Corollary 1.8]. Observe that the convergence in (3.1.5) is given in terms of pointwise weak
convergence of quenched cumulative distribution functions, therefore it is even weaker than
a weak quenched limit theorem.
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3.1. Limit theorems for RWSRE: an overview 17

3.1.2 Sparse environment

In the setting of a sparse random environment, the asymptotic behaviour of the walk is driven
by two ingredients. The first one is the drift, that is the distribution of λ. The second one
is sparsity, that is the tail behaviour of ξ. Since RWSRE may be seen as a model in-between
a walk in i.i.d. environment and a symmetric one, we may expect that, depending on the
interplay between the drift and the sparsity, it should manifest behaviour resembling one or
the other.

As it is in the case of i.i.d. environment, whenever it is the drift that determines the
asymptotic behaviour of the walk, the shape of the limit depends on the function r defined in
(3.1.1). In Section 3.2 we show how to adapt Goldsheid’s result into the setting of RWSRE.
That is, we prove that if r(2) < 1, then the main assumption that guarantees a strong quenched
CLT for T is that Eξ4 <∞. Next we obtain the limit theorem for the position of the walk, in
the same fashion as it was done in [15].

In their paper introducing the RWSRE model, Matzavinos et al. proved annealed limit
theorems for a transient RWSRE that generalize results on RWRE described above (see [20,
Theorem 3.8]). However, one of their assumptions was that ξ is bounded. More general results
were proven by Buraczewski et al. in [7, 6]. It turns out that if r(α) = 1 for some α ∈ (0, 2],
then the key assumption under which the sequence of hitting times lies in the domain of
attraction of an α-stable law is that

Eξ2α <∞. (3.1.6)

In this case one may generalize the proof given by Kesten et al. and obtain an annealed limit
theorem for T , with α-stable distribution in the limit, and then deduce the annealed limit
theorems for X (see Corollary 2.4 in [7]). The limiting behaviour of the walk is determined
mostly by the drift and the presence of blocks on which the movement is symmetric has little
impact on the shape of the limit.

To describe the complementary case, in which it is the sparsity that plays the dominant
role in the limiting behaviour of the walk, the authors consider ξ having regularly varying tails
with parameter −β such that β ∈ (0, 4) and r(β/2) < 1. Observe that in this case, if α > 0

satisfying (3.1.2) exists, then α > β/2 and (3.1.6) does not hold. In [7], the authors show that
if Eξ <∞, then, under the annealed measure, the sequence of hitting times lies in the domain
of attraction of a β/2-stable law. If Eξ =∞, then the limiting distribution is more complex;
we describe it briefly in Chapter 4.

The phenomenon described above may be explained heuristically with the help of Lemma
2.3.3. Equations (2.3.8) and (2.3.10) suggest that Trk, which counts the time spent by the
particle in k’th block when crossing it for the first time, should inherit tail behaviour from ξ2

k,
while Tlk, which is the duration of its excursions to the left, should have asymptotics similar
to ξkWk−1. If α given by (3.1.2) exists and (3.1.6) holds, then by Kesten-Goldie theorem [4,
Theorem 2.4.4], W has regularly varying tails with index −α, while the tails of ξ2 are lighter.
Therefore we may expect that large Tk’s are obtained when the particle makes excursions to
the left that are long because of unfavourable drift. In the complementary case it is the tail
of ξ2 that is heavier, and large Tk’s occur when the particle crosses a particularly long block
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18 Chapter 3. Limit theorems for RWSRE

(a) α ≈ 1.75, β = 0.9 (b) α ≈ 1.19, β = 2.5

Figure 3.1.1: Exemplary trajectories of RWSRE for ξ with regularly varying tails. Horizontal
lines indicate marked points; the darker the line, the stronger the drift to −∞.

for the first time.
Since the limit theorems for the hitting times under the annealed measure resemble those

already known for the i.i.d. environment whenever condition (3.1.6) is satisfied, it is natural to
expect the same similarity under the quenched measure. That is, obtaining a result analogous
to (3.1.4) should require a modification of the techniques used in [23]. Therefore in Chapter 4
we focus on the complementary case, that is we present the quenched counterpart of results
described above in the case of ξ having regularly varying tails in which it is the sparsity of
the environment that drives the limiting behaviour of the walk. We prove the weak quenched
limit theorems for the sequence of hitting times and show that the strong limit theorems do
not hold. However, due to the sparsity of the environment, deducing the limit theorems for
X seems to require some additional analysis and we limit ourselves to the sequence T .

3.2 Quenched central limit theorem for the position of the walk

In this section we show how the results and techniques concerning strong quenched limit
theorems for the first passage times and the position of the walk in a non-sparse environment
presented in [15] may be adapted into the setting of RWSRE.

Throughout this section, we assume the following:

Eρ2+2δ < 1, E(ρξ)2+2δ <∞, Eξ4+4δ <∞ for some δ > 0. (3.2.1)

The first assumption is an exact analogue to the case of i.i.d. environment. The other two
guarantee that the blocks in which the walk is symmetric are not large enough to influence its
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3.2. Quenched central limit theorem for the position of the walk 19

limiting behaviour significantly.
Recall that µk = EωTk is the quenched mean time the walker needs to reach Sk when start-

ing from Sk−1. Note that the sequence (µk)k∈Z is stationary under P, and so is (VarωTk)k∈Z.
Denote

µ = Eµ1 = ET1, σ2 = E [VarωT1]

and let

b(n, ω) =
n

µ
− 1

µ

n/µ∑
k=1

(µk − µ), σ̃ = σµ−3/2Eξ.

Observe that, by Corollary 2.3.2, µ and σ̃ are finite under assumptions (3.2.1), and b(n) is
finite for every n ∈ N, P-almost surely.

Theorem 3.2.1. Under assumptions (3.2.1), P -almost surely,

Pω

[
Xn − Sb(n)

σ̃
√
n

< t

]
→ Φ(t),

where Φ is the cumulative distribution function of a standard normal variable.

3.2.1 The sequence (TSn)n∈N

Let us first derive a quenched central limit theorem for the sequence (TSn)n∈N. Since under Pω
the variables Tk are independent, but not identically distributed, we will use Lindeberg-Feller
theorem.

Theorem 3.2.2. For P-almost every ω,

Pω

[
TSn − EωTSn

σ
√
n

6 t

]
n→∞−−−→ Φ(t). (3.2.2)

Proof. Since (VarωTk)k∈N is a stationary sequence, the ergodic theorem implies that P-almost
surely,

n∑
k=1

Eω

(
Tk − EωTk√

n

)2

=
1

n

n∑
k=1

VarωTk
n→∞−−−→ σ2.

Similarly, for every ε > 0 and M <∞,

lim sup
n→∞

n∑
k=1

Eω

[(
Tk − EωTk√

n

)2

1|Tk−EωTk|>ε
√
n

]

6 lim
n→∞

1

n

n∑
k=1

Eω
[
(Tk − EωTk)2

1|Tk−EωTk|>M
]

= E
[
Eω
[
(T1 − EωT1)2

1|T1−EωT1|>M
]]

P-almost surely. Since E[VarωT1] < ∞, the last expression can be made arbitrarily small by
taking largeM . Therefore for P-almost every ω, the sequence (Tk)k∈N satisfies the Lindeberg-
Feller conditions under Pω.

Remark 3.2.3. Since Φ is a continuous function, the convergence (3.2.2) is uniform in t.

31:11279



20 Chapter 3. Limit theorems for RWSRE

3.2.2 The sequence (Xn)n∈N

To derive limit theorem for X, let us first consider X∗n = max{Xk : k 6 n}. Then for any
j ∈ N,

Pω [X∗n < Sj ] = Pω
[
TSj > n

]
= Pω

[
TSj − EωTSj

σ
√
j

>
n− EωTSj

σ
√
j

]
.

Our aim is to find a sequence j = j(n, ω, t) such that (n−EωTSj )/σ
√
j → −t P-almost surely.

Note that

n− EωTSj = n− jµ−
j∑

k=1

(µk − µ).

To eliminate the linear term, denote j(n, ω, t) = n/µ+ h(n, ω, t), then

n− EωTSj = −µh−
n/µ+h∑
k=1

(µk − µ).

Since we want the expression to tend to −t, it is natural to consider, for some constant c,

h(n, ω, t) = ct
√
n− 1

µ

n/µ∑
k=1

(µk − µ).

Then
j(n, ω, t)

n
=

1

µ
+

ct√
n
− 1

nµ

n/µ∑
k=1

(µk − µ)→ 1

µ

P-almost surely, by the ergodic theorem. Since we want the limit of

n− EωTSj
σ
√
j

= −µct
√
n

σ
√
j
− µ

σ
√
j

n/µ+h∑
k=n/µ+1

(µk − µ)

to be −t a.s., we should put c = σµ−3/2 and show that

1√
n

n/µ+h∑
k=n/µ+1

(µk − µ)→ 0. (3.2.3)

As was mentioned, we follow the approach presented in [15]. In particular, instead of
presenting all the details, we shall only give the essential part of the proof. Denote

H(n, ω) =

n∑
j=1

(µj − µ), H∗(n, ω) = max
s6n
H(s, ω).

For p > 1, denote by ‖ · ‖p the Lp norm with respect to P. It may be seen from the proofs of
Lemmas 5 and 7 in [15] that the following result is sufficient for (3.2.3):

Lemma 3.2.4. Under assumptions (3.2.1) there exists C > 0 such that

||H∗(n)||2+2δ 6 C
√
n.
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Proof. Recall that by (2.3.1),

µk − µ = ξ2
k + 2ξkWk−1 − Eξ2 + 2EξEW

and

EW = E

[
0∑

k=−∞
ξkΠk,0

]
= Eρξ

∞∑
k=0

r(1)k,

therefore, for c0 = Eξ Eρξ <∞,

H(n, ω) =
n∑
k=1

(
ξ2
k − Eξ2

)
+

n∑
k=1

k−1∑
j=−∞

2
(
ξkξjΠj,k−1 − c0r(1)k−j−1

)
. (3.2.4)

By Marcinkiewicz-Zygmund inequality, since the variables ξ2
k −Eξ2 are i.i.d. with mean 0, for

some constant C1, ∥∥∥∥∥
n∑
k=1

(
ξ2
k − Eξ2

)∥∥∥∥∥
2+2δ

6 C1

∥∥∥∥∥
n∑
k=1

(
ξ2
k − Eξ2

)2∥∥∥∥∥
1/2

1+δ

6 C1

(
n∑
k=1

∥∥(ξ2
k − Eξ2)2

∥∥
1+δ

)1/2

= C1

∥∥∥(ξ2 − Eξ2
)2∥∥∥1/2

1+δ

√
n,

and since Eξ4+4δ < ∞, all the above norms are finite. This estimate together with Doob’s
maximal inequality imply that for a constant C2,∥∥∥∥∥max

s6n

s∑
k=1

(
ξ2
k − Eξ2

)∥∥∥∥∥
2+2δ

6
2 + 2δ

1 + δ

∥∥∥∥∥
n∑
k=1

(
ξ2
k − Eξ2

)∥∥∥∥∥
2+2δ

6 C2

√
n. (3.2.5)

To estimate the maxima of the second addend in (3.2.4), we first split the sum into blocks.
To this end, denote

B(k, l) = 2
(
ξkξk−lΠk−l,k−1 − c0r(1)l−1

)
,

and let γ = r(2 + 2δ)1/(2+2δ). By Jensen’s inequality, r(1) 6 γ < 1. Moreover, for any l > 0,

‖B(k, l)‖2+2δ 6 2 ‖ξkξk−lΠk−l,k−1‖2+2δ + 2c0r(1)l−1

= 2 ‖ξ‖2+2δ ‖ξρ‖2+2δ γ
l−1 + 2c0r(1)l−1

6 C3γ
l−1

(3.2.6)

for some constant C3. We have
n∑
k=1

∑
j<k

2
(
ξkξjΠj,k−1 − c0r(1)k−j−1

)
=

n∑
k=1

∞∑
l=1

B(k, l)

=

√
n∑

l=1

n∑
k=1

B(k, l) +
∑
l>
√
n

n∑
k=1

B(k, l),

(3.2.7)
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thus

max
s6n

s∑
k=1

∞∑
l=1

B(k, l) 6

√
n∑

l=1

max
s6n

s∑
k=1

B(k, l) +
∑
l>
√
n

n∑
k=1

|B(k, l)|.

Denote Bn(l) =
∑n

k=1B(k, l) and B∗n(l) = maxs6nBs(l). Then by (3.2.6) and (3.2.7),

∥∥∥∥∥max
s6n

s∑
k=1

∞∑
l=1

B(k, l)

∥∥∥∥∥
2+2δ

6

√
n∑

l=1

‖B∗n(l)‖2+2δ + C3

∑
l>
√
n

nγl−1.

It remains to give bounds on ‖B∗n(l)‖2+2δ. For fixed l, let

si =

⌊
n− i

2l

⌋
, Dn(l, i) =

si∑
j=0

B(i+ 2lj, l), D∗n(l, i) = max
s6si

∣∣∣∣∣∣
s∑
j=0

B(i+ 2lj, l)

∣∣∣∣∣∣ ,
so that Bn(l) =

∑2l
i=1Dn(l, i). Observe that each Dn(l, i) is a sum of centered, i.i.d. vari-

ables. Therefore we may, as before, use the Doob’s and Marcinkiewicz-Zygmund inequalities
to obtain, for a constant C4,

‖D∗n(l, i)‖2+2δ 6 C4

∥∥∥∥∥∥
si∑
j=0

B(i+ 2lj, l)2

∥∥∥∥∥∥
1/2

1+δ

6 C4

( n
2l

)1/2
‖B(1, l)‖2+2δ

6 C4C3

( n
2l

)1/2
γl−1,

where the last inequality follows from (3.2.6). Therefore, for some constant C5,

‖B∗n(l)‖2+2δ 6
2l∑
i=1

‖D∗n(l, i)‖2+2δ 6 C5

√
nlγl−1,

which together with (3.2.5) gives

‖H∗(n)‖2+2δ 6 C2

√
n+ C5

√
n

√
n∑

l=1

√
lγl−1 + C3n

∑
l>
√
n

γl−1 = O(
√
n).

Proof of Theorem 3.2.1. Since Lemma 3.2.4 implies (3.2.3), we have

Pω
[
X∗n < Sj(n,ω,t)

]
= Pω

[
TSj − EωTSj

σ
√
j

>
n− EωTSj

σ
√
j

]
→ 1− Φ(−t) = Φ(t).
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Recall that j(n, ω, t) = b(n, ω) + ct
√
n for c = σµ3/2, thus

{
X∗n < Sj(n,ω,t)

}
=

X∗n < Sb(n) +

b(n)+ct
√
n∑

k=b(n)+1

ξk


=

X∗n − Sb(n) <

b(n)+ct
√
n∑

k=b(n)+1

(ξk − Eξ) + cEξt
√
n


=

X∗n − Sb(n)

cEξ
√
n
− 1

cEξ
√
n

b(n)+ct
√
n∑

k=b(n)+1

(ξk − Eξ) < t


We may repeat an argument used to show inequality (3.2.5) and obtain, for some C > 0,∥∥∥∥∥max

s6n

s∑
k=1

(ξk − Eξ)

∥∥∥∥∥
2+2δ

6 C
√
n.

Since b(n)/n→ 1/µ a.s., we may invoke the Lemmas 5 and 7 from [15] once more to get

b(n)+ct
√
n∑

k=b(n)+1

(ξk − Eξ)→ 0

and thus
Pω

[
X∗n − Sb(n)

cEξ
√
n

< t

]
→ Φ(t).

Finally, it remains to show that we may replace X∗ with X. To this end, denote

νn = inf{k > 0 : Sk > n}

and observe that
|X∗n −Xn|√

n
6
n− TX∗n√

n
6
TνX∗n − TX∗n√

n
6

TνX∗n√
n
.

Since ET2
k < ∞, the ergodic theorem implies that Tk/

√
k → 0 P-almost surely as k → ∞,

while by Proposition 2.2.4 and the law of large numbers, νX∗n/n → v/Eξ P-almost surely.
Therefore TνX∗n/

√
n→ 0, which finishes the proof of the theorem.
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Chapter 4

Weak quenched limit theorems for the
first passage times

In this chapter, we present the weak quenched limit theorems for first passage times of RWSRE
in the case of dominating sparsity. The following is an extract from [8] with alterations done
by the author to keep consistency with other chapters.

4.1 General setting

We will study the distribution of T in the weak quenched setting, which means that we will
investigate the behaviour of a sequence of random measures

µn,ω(·) = Pω [(Tn − bn)/an ∈ · ]

for suitable choices of sequences (an)n∈N and (bn)n∈N, possibly depending on ω. Throughout
this chapter, we will consider ξ having a regularly varying tail with index −β for β ∈ (0, 4), and
assume that Eρβ/2 < 1. As was remarked in Section 3.1, if β ∈ [1, 4) and Eξ <∞, then with
respect to the annealed probability T lies in the domain of attraction of β/2-stable law, while
for β < 1 one sees an interplay between the contribution of the sparse random environment
and the random movement of the process in the unmarked sites. To state this result take ϑ
to be a non-negative random variable with the Laplace transform

E
[
e−sϑ

]
=

1

cosh(
√
s)
, s > 0. (4.1.1)

Note that 2ϑ is equal in distribution to the exit time of the one-dimensional Brownian motion
from the interval [−1, 1], see [27, Proposition II.3.7]. Next consider a measure η on K =

[0,∞]2 \ {(0, 0)} given via

η({(v, u) ∈ K : u > x1 or v > x2}) = x−β1 + E[ϑβ/2]x
−β/2
2 − E[min{x−β1 , ϑβ/2x

−β/2
2 }]

for x1, x2 > 0. Let N =
∑

k δ(tk,jk) be a Poisson point process on [0,∞) × K with intensity
LEB ⊗ η, where LEB stands for the one-dimensional Lebesgue measure. Under mild integ-

25
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26 Chapter 4. Weak quenched limit theorems

rability assumptions, see [6, Lemma 6.4], the integral

L(t) = (L1(t), L2(t)) =

∫
[0,t]×K

jN(ds, dj), t > 0

converges and defines a two-dimensional non-stable Lévy process with Lévy measure η. Next
consider the β-inverse subordinator

L←1 (t) = inf{s > 0 : L1(s) > t}, t > 0.

Finally, if β ∈ (0, 1), then under some additional mild integrability assumptions [6, Theorem
21], with respect to the annealed probability,

Tn/n
2 ⇒ 2L2(L←1 (1)−) + 2ϑ(1− L1(L←1 (1)−))2. (4.1.2)

Our goal is to present quenched version of these results. As we will see in our main theorem,
the terms L2(L←1 (1)−) and L1(L←1 (1−)) present in (4.1.2) can be viewed as the contribution
of the environment, whereas ϑ reflects the contribution of the movement of the random walker
in the unmarked sites that are close to n.

The chapter is organised as follows: in Section 4.2 we give a precise description of our
set-up and main results. In Section 4.3 we provide a preliminary analysis of the environment.
The essential parts of the proof of our main results are in Sections 4.4 and 4.5, where we prove
weak quenched limits and the absence of the strong quenched limit, respectively.

4.2 Weak quenched limit theorems

In this section we will present our main results. We assume that

P[ξ > t] ∼ t−β`(t) (4.2.1)

for some β ∈ (0, 4) and slowly varying `. We will focus on the case in which the asymptotic of
the system is not determined solely by the drifts at marked sites and thus we will also assume
that

E[ρ2γ ] < 1, E[ξ3γργ ] <∞, E[ξ2γρ2γ ] <∞, for some γ > β/4. (4.2.2)

Without loss of generality we will assume that γ < min{1, β/2}, in particular Eξ2γ < ∞.
As we will see later, the first condition in (4.2.2) guarantees that a significant part of the
fluctuations of Tn comes from the time that the process spends in the unmarked sites. The
next conditions are purely technical. Note that we do not assume that there exists α > 0 for
which (3.1.2) holds, however if it does exist, then necessarily 2α > β.

As it is the case for annealed limit theorem, one needs to distinguish between a moderately
(Eξ <∞) and strongly (Eξ =∞) sparse random environment.
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4.2. Weak quenched limit theorems 27

To describe the former take (ϑj)j∈N to be a sequence of i.i.d. copies of ϑ distributed
according to (4.1.1) and let G :Mp((0,∞))→M1(R) be given via

G(ζ)(·) =

{
P
[∑

i>1 xi(2ϑi − 1) ∈ ·
]
, if

∫
x2ζ(dx) <∞,

δ0(·) otherwise,
(4.2.3)

for ζ =
∑

i>1 δxi , where (xi)i>1 is an arbitrary enumeration of the points and the probability
is taken with respect to (ϑj)j∈N. Take (an)n∈N to be any non-decreasing sequence of positive
real numbers such that

nP[ξ > an]→ 1.

Then, since the tail of ξ is assumed to be regularly varying, the sequence (an)n∈N is also
regularly varying with index 1/β. That is for some slowly varying function `1,

an = n1/β`1(n).

The sequence (an)n∈N will play the role of the scaling factor in our results.

Theorem 4.2.1. Assume (2.2.6), (4.2.1) and (4.2.2). If Eξ <∞, then

Pω
[
(Tn − EωTn)/a2

n ∈ ·
]
⇒ G(N)(·)

inM1(R), where N is a Poisson point process on (0,∞) with intensity βx−β/2−1dx/2Eξ.

Before we introduce the notation necessary to formulate our results in the strongly sparse
random environment, we will first treat the critical case which is relatively simple to state.
Denote

mn = nE [ξ 1ξ6an ] .

Note that by Karamata’s theorem [3, Theorem 1.5.11] the sequence (mn)n∈N is regularly
varying with index 1/β. Furthermore an = o(mn) if β = 1 and an ∼ (1 − β)mn if β < 1.
Next let (cn)n∈N be the asymptotic inverse of (mn)n∈N, i.e. any increasing sequence of natural
numbers such that

lim
n→∞

cmn/n = lim
n→∞

mcn/n = 1.

By the properties of an asymptotic inversion of regularly varying sequences [3, Theorem 1.5.12],
cn is well defined up to asymptotic equivalence and is regularly varying with index β. Finally,
by the properties of the composition of regularly varying sequences, (acn)n∈N is regularly
varying with index 1 and acn = o(n) if β = 1.

Theorem 4.2.2. Assume (2.2.6), (4.2.1) and (4.2.2). If Eξ =∞ and β = 1, then

Pω
[
(Tn − EωTn)/a2

cn ∈ ·
]
⇒ G(N)(·)

inM1(R), where N is a Poisson point process on (0,∞) with intensity x−3/2dx/2.
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The limiting random measures in Theorems 4.2.1 and 4.2.2 share some of the properties
of their counterpart in the case of i.i.d. environment [23, Remark 1.5]. Namely, using the
superposition and scaling properties of Poisson point processes, one can directly show that
for each n ∈ N and G,G1, . . . , Gn being i.i.d. copies of the limit random measure G(N) in
Theorem 4.2.1 or Theorem 4.2.2,

G1 ∗G2 ∗ . . . ∗Gn(·) d
= G(·/n2/β). (4.2.4)

The statement of our results in the strongly sparse case needs some additional notation.
As it is the case for the annealed results, it is most convenient to work in the framework
of non-decreasing càdlàg functions rather than point processes. Denote by D↑ the class of
non-decreasing càdlàg functions R+ → R+ and for h ∈ D↑ consider

Υ(h) = sup{h(t) : t ∈ R+, h(t) 6 1}. (4.2.5)

Note that if h(t) = 1 for some t, then necessarily Υ(h) = 1. For h ∈ D↑ denote by
(xk(h), tk(h))k∈N an arbitrary enumeration of jumps of h, that is tk = tk(h) ∈ R+ for k ∈ N are
all points on the non-negative half-line such that h has a (left) discontinuity with jump of size
xk(h) = h(tk)−h(t−k ) > 0 at tk. Note that the random series

∑
k:h(tk)61 xk(h)2(2ϑk−1) is con-

vergent since it has an expected value bounded by h(1)E|2ϑ− 1|. Finally let F : D↑ →M1(R)

be given by

F (h)(·) = P

(1−Υ(h))2(2ϑ0 − 1) +
∑

k:h(tk)61

xk(h)2(2ϑk − 1) ∈ ·

 .
Theorem 4.2.3. Assume (2.2.6), (4.2.1) and (4.2.2). If β ∈ (0, 1), then

Pω
[
(Tn − EωTn)/n2 ∈ ·

]
⇒ F (L)(·)

inM1(R), where L is a β-stable Lévy subordinator with Lévy measure ν(x,+∞) = x−β.

Interestingly the limit measure F (L) does not enjoy a self-similarity property in the sense
of (4.2.4). Namely, for any a, b ∈ R, b > 0 the laws of

F1 ∗ F2(·) and F ((· − a)/b)

are different, where F, F1 and F2 are independent copies of the limiting random measure F (L)

in Theorem 4.2.3.
Finally, we prove that the weak convergence stated above cannot be improved to conver-

gence in distribution. Therefore, as in the case of i.i.d. environment, the asymptotic quenched
behaviour of T ought to be expressed in terms of weak quenched convergence. To keep the
proof relatively short, we omit the boundary case of β = 1,Eξ =∞.

Theorem 4.2.4. Assume (2.2.6), (4.2.1), and (4.2.2) and consider

κn =

{
a2
n if Eξ <∞,
n2 if Eξ =∞ and β < 1.

(4.2.6)
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Then P-a.s. the sequence of probability distributions

Pω[(Tn − EωTn)/κn ∈ · ] (4.2.7)

has no limit in the Prokhorov metric.

4.3 Auxiliary results

We will now present a few lemmas that we will use in our proofs. We will discuss the asymptotic
behaviour of the hitting times (2.2.4). It will allow us to understand the process X better and
indicate its ingredients which play an essential role in the proof of our main results. We will
first analyse the hitting times T along the marked sites S, that is

TSk = inf{n : Xn = Sk}, k > 1.

Recall Trk, Tlk defined by (2.3.7) and (2.3.6). They give rise to the following decomposition
that will be used repeatedly:

TSk =

k∑
j=1

Tj =

k∑
j=1

Tlj +

k∑
j=1

Trj =: T lSk + T rSk .

In Lemma 2.3.3, we calculated the quenched expected value and quenched variance of Trk,Tlk.
Below we prove that after hitting any chosen site Sk the consecutive excursions to the left are
negligible. This entails that behaviour of TSk is determined mainly by T rSk .

4.3.1 The sequence (T rSn)n∈N

Recall that, under Pω, Trk equals in distribution to the time it takes a simple symmetric
random walk on [0, ξk] with a reflecting barrier placed in 0 to reach ξk for the first time when
starting from 0. Let (Yn)n∈N be a simple symmetric random walk on Z independent of the
environment ω. Define

Un = inf{m : |Ym| = n}, (4.3.1)

i.e. Un is the first time the reflected random walk hits n. Then for every k > 0, for fixed
environment ω, Trk

d
= Uξk . In what follows we investigate how the asymptotic properties of ξk

affect those of Trk. To do that, we will utilize the aforementioned equality in distribution and
hence we first need to describe the asymptotic properties of Un as n tends to infinity. The
proof of the next lemma is omitted, since it follows from a standard application of Doob’s
optimal stopping theorem to martingales Y 2

n −n, Y 4
n −6nY 2

n +3n2 +2n, Y 6
n −15nY 4

n +(45n2 +

30n)Y 2
n − (15n3 + 30n2 + 16n), and exp{±tYn}cosh(t)−n.

Lemma 4.3.1. Let Un, for n ∈ N, be given in (4.3.1). We have

EUn = n2, EU2
n = 5n4/3− 2n2/3.
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30 Chapter 4. Weak quenched limit theorems

Moreover, as n→∞,
Un/n

2 ⇒ 2ϑ,

for ϑ defined in (4.1.1). Furthermore the family of random variables {n−4U2
n}n∈N is uniformly

integrable.

The sequence T rSn =
∑n

k=1 Trk is a sum of Pω-independent random variables. Since, by
Lemma 4.3.1,

VarωTrk =
2

3
ξ4
k −

2

3
ξ2
k, (4.3.2)

in our setting the variance VarωT
r
Sn

behaves asymptotically as (2/3)
∑n

k=1 ξ
4
k, thus obeys

a stable limit theorem [14, Theorem 3.8.2]. Moreover, we can use precise large deviation
results for sums of i.i.d. regularly varying random variables [10, Theorem 9.1] to describe the
deviations of VarωT

r
Sn
. That is for any sequence (αn)n∈N that tends to infinity,

P[VarωT
r
Sn > αna

4
n] ∼ (2/3)β/4nα−β/4n a−βn `(α1/4

n an).

We can now use Potter bounds [3, Theorem 1.5.6] to control `(α1/4
n an) with `(an). This in

turn yields a large deviation result asymptotic on the logarithmic scale. We summarize this
discussion in the following lemma.

Corollary 4.3.2. The sequence (VarωT
r
Sn
/a4

n)n∈N converges in distribution (with respect to P)
to some stable random variable. Moreover for any sequence (αn)n∈N that tends to infinity,

log P[VarωT
r
Sn > αna

4
n] ∼ −β log(αn)/4.

4.3.2 The sequence (T lSn)n∈N

Recall the formulae for quenched mean and variance of variables Tlk given in Lemma 2.3.3.
The next lemma implies that in our setting, the left excursions of the process are negligible.

Lemma 4.3.3. For every ε > 0 and θ > 0,

P
[
VarωT

l
Sn > εnθa4

n

]
6 o(1)/nθγ , n→∞,

where γ is a parameter satisfying (4.2.2). In particular,

1

a4
n

VarωT
l
Sn

P→ 0.

Proof. To prove the lemma one needs to deal with the formula for the variance (2.3.11). To
avoid long and tedious arguments we will explain how to estimate two of the terms, i.e. we
will prove

P

[ n∑
k=1

ξk ·
∑
j<k−1

Πj+1,k−1ξj+1W
2
j > εnθa4

n

]
6 o(1)/nθγ , n→∞ (4.3.3)
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and

P

[ n∑
k=1

ξk ·
∑
j<k−1

Πj+1,k−1ξ
3
j+1 > εnθa4

n

]
6 o(1)/nθγ , n→∞. (4.3.4)

All the remaining terms can be treated using exactly the same arguments.
Recall that γ ∈ (β/4, 1) and Eρ2γ < 1. The Markov inequality, subadditivity of the

function x 7→ xγ , and independence of ξk, Πj+2,k−1, ρj+1ξj+1 and Wj yield

P

[ n∑
k=1

ξk ·
∑
j<k−1

Πj+1,k−1ξj+1W
2
j > εnθa4

n

]
6

1

εγnθγa4γ
n

E

[ n∑
k=1

ξk ·
∑
j<k−1

Πj+1,k−1ξj+1W
2
j

]γ
6

1

εγnθγa4γ
n

n∑
k=1

Eξγk ·
∑
j<k−1

EΠγ
j+2,k−1E[ργj+1ξ

γ
j+1]EW 2γ

j 6
Cn

εγnθγa4γ
n

=
o(1)

nθγ
,

where the last inequality follows from our hypotheses (4.2.2) and Lemma 2.2.1. This proves
(4.3.3). We proceed similarly with the second formula (4.3.4):

P

[ n∑
k=1

ξk ·
∑
j<k−1

Πj+1,k−1ξ
3
j > εnθa4

n

]
6

1

εγa4γ
n

E

[ n∑
k=1

ξk ·
∑
j<k−1

Πj+1,k−1ξ
3
j

]γ
6

1

εγnθγa4γ
n

n∑
k=1

Eξγk ·
∑
j<k−1

EΠγ
j+2,k−1E[ργj+1ξ

3γ
j+1] 6

Cn

εγnθγa4γ
n

=
o(1)

nθγ
.

Invoking the first part of the lemma with θ = 0 we conclude convergence of VarωT
l
Sn
/a4

n

to 0 in probability.

4.4 Proofs of the weak quenched limit theorems

In this section we present a complete proof of our main results. We will begin by present-
ing a suitable coupling. Then we will treat the moderately sparse and strongly sparse case
separately.

4.4.1 Coupling

In the first step we will prove our result along the marked sites. That is we analyse

φn,ω(·) = Pω
[
a−2
n (TSn − EωTSn) ∈ ·

]
. (4.4.1)

The main part of the argument concentrates on the limit law of T rSn =
∑n

k=1 Trk. Recall Un
defined in (4.3.1), which is the first time the reflected random walk hits n. For every k > 0 and
for fixed environment ω it holds that Trk

d
= Uξk . By the merit of Lemma 4.3.1 and Skorokhod’s

representation theorem we may assume that our space holds random variables U (k)
n and ϑk

such that:

• {U (k)
n }n, ϑk for k ∈ N are independent copies of {Un}n, ϑ;
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32 Chapter 4. Weak quenched limit theorems

• {U (k)
n , ϑk : n, k ∈ N} and {ξk : k ∈ N} are independent;

• U
(k)
n /n2 → 2ϑk in L2 as n→∞;

• for all ω, U (k)
ξk

and Trk have the same distribution under Pω.

Observe that the convergence in L2 is secured by the convergence in distribution and uniform
integrability provided in Lemma 4.3.1.

To simplify the notation we will write Uξk instead of U (k)
ξk

.

Proposition 4.4.1. Assume (4.2.1). Then as n→∞,

a−4
n Varω

[
T rSn − EωT

r
Sn −

n∑
k=1

ξ2
k(2ϑk − 1)

]
P→ 0.

Proof. First, note that

Varω

[
T rSn − EωT

r
Sn −

n∑
k=1

ξ2
k(2ϑk − 1)

]
d
= Varω

[
n∑
k=1

(
Uξk − 2ξ2

kϑk
)]
.

For ε > 0 let I1
n = {k 6 n : ξk > εan} and I2

n = {k 6 n : ξk 6 εan}. Then for any δ > 0,

P

[
Varω

[
n∑
k=1

(
Uξk − 2ξ2

kϑk
)]

> δa4
n

]
6

P

∑
k∈I1n

ξ4
kVarω

[
Uξk
ξ2
k

− 2ϑk

]
>
δa4
n

2

+ P

∑
k∈I2n

ξ4
kVarω

[
Uξk
ξ2
k

− 2ϑk

]
>
δa4
n

2

 . (4.4.2)

Since U (k)
n , ϑk are independent copies of Un, ϑ such that Un/n2 → ϑ in L2, there exists M > 0

such that

Varω

[
Uξk
ξ2
k

− 2ϑk

]
< M for all k, ω,

and, for N ∈ N large enough,

Varω

[
U

(k)
N

N2
− 2ϑk

]
< ε for all k, ω.

We can hence estimate, for n sufficiently large,

P

∑
k∈I1n

ξ4
kVarω

[
Uξk
ξ2
k

− 2ϑk

]
>
δa4
n

2

 6 P

[∑n
k=1 ξ

4
k

a4
n

>
δ

2ε

]
.

Since the sequence
∑n

k=1 ξ
4
k/a

4
n converges weakly (under P) to some β/4-stable variable Lβ/4,

the probability on the right hand side above converges to P[Lβ/4 > δ/(2ε)]. To estimate the
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second term in (4.4.2), note that

P

∑
k∈I2n

ξ4
kVarω

[
Uξk
ξ2
k

− 2ϑk

]
>
δa4
n

2

 6 P

[
n∑
k=1

ξ4
k 1ξk6εan >

δa4
n

2M

]

6
2M

δ
a−4
n E

[
n∑
k=1

ξ4
k 1ξk6εan

]
=

2M

δ
na−4

n E
[
ξ4
1ξ6εan

]
.

By the Fubini theorem, we have

E
[
ξ4
1ξ6εan

]
6
∫ εan

0
4t3P[ξ > t]dt

and the Karamata theorem [3, Theorem 1.5.11] entails that the expression on the right is
asymptotically equivalent to 4ε4a4

nP[ξ > εan] ∼ 4ε4−βn−1a4
n. Finally, we can conclude that

for any ε, δ > 0,

lim sup
n

P

[
n∑
k=1

ξ4
kVarω

[
Uξk
ξ2
k

− ϑk
]
> δa4

n

]
6

8M

δ
ε4−β + P

[
Lβ/4 >

δ

2ε

]
and passing with ε to 0 we conclude the desired result.

We are now ready to determine the weak limit of the sequence φn(ω) = φn,ω given by
(4.4.1). Recall the map G defined in (4.2.3).

Lemma 4.4.2. The map G is measurable.

Remark 4.4.3. The proof of Lemma 4.4.2 is identical to that of Lemma 1.2 in [23] and therefore
will be omitted. Part of the proof is showing that the map

G2 : `2 3 (xk)k∈N 7→ P

[ ∞∑
k=1

xk(2ϑk − 1) ∈ ·

]
∈M1(R)

is continuous.

Theorem 4.4.4. Assume (4.2.1) and (4.2.2). Then

φn ⇒ G(N∞)

inM1(R), where N∞ is a Poisson point process with intensity βx−β/2−1dx/2.

In the proof of this result we will use the following lemma.

Lemma 4.4.5 ([23, Remark 3.4]). Let θn be a sequence of random probability measures on R2

defined on the same probability space. Let γn and γ′n denote the marginals of θn. Suppose that

Eθn(X − Y )
P→ 0 and Varθn(X − Y )

P→ 0,

where X an Y are the coordinate variables in R2. If γn ⇒ γ, then γ′n ⇒ γ.
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34 Chapter 4. Weak quenched limit theorems

Proof of Theorem 4.4.4. First, observe that the sequence of random point measures Nn =∑n
k=1 δξ2ka

−2
n

converges weakly to N∞. Indeed, this follows by an appeal to [25, Proposition
3.21] and checking that

nP[ξ2/a2
n ∈ · ]→ µ(·) vaguely on (0,∞],

where µ(dx) = βx−β/2−1dx/2.
Since G is not continuous, we cannot simply apply the continuous mapping theorem and,

similarly as in [23], we are forced to follow a more tedious argument. Define

Gε :Mp((0,∞]) 3
∞∑
k=1

δxk 7→ P

[ ∞∑
k=1

xk(2ϑk − 1)1xk>ε ∈ ·

]
∈M1(R).

Then for any ε > 0 the map Gε is continuous on the set Mε
p := {ζ ∈Mp : ζ({ε,∞}) = 0};

indeed, take ζn, ζ ∈ Mε
p such that ζn → ζ vaguely. Then, by [25, Proposition 3.13], since the

set [ε,∞] is compact in (0,∞], there exists pε <∞ and an enumeration of points of ζ and ζn
(for n sufficiently large) such that

ζn(· ∩ [ε,∞]) =

pε∑
k=1

δxnk , ζ(· ∩ [ε,∞]) =

pε∑
k=1

δxk

and
(xn1 , . . . , x

n
pε)→ (x1, . . . , xpε) as n→∞.

Therefore

Gε(ζn)(·) = P

[
pε∑
k=1

xnk(2ϑk − 1) ∈ ·

]
⇒ P

[
pε∑
k=1

xk(2ϑk − 1) ∈ ·

]
= Gε(ζ)(·).

By [2, Theorem 3.2], to prove that G(Nn)⇒ G(N∞) it is enough to show

Gε(Nn)⇒n Gε(N∞) for all ε > 0, (4.4.3)

Gε(N∞)⇒ε G(N∞), (4.4.4)

lim
ε→0

lim sup
n→∞

P [ρ(Gε(Nn), G(Nn)) > δ] = 0 for all δ > 0, (4.4.5)

where ρ is the Prokhorov metric onM1(R).
First, for any ε > 0, N∞ ∈ Mε

p almost surely. Thus (4.4.3) is satisfied by the continuous
mapping theorem since Gε is continuous.

For any sequence x = (xk)k∈N ∈ `2 and ε > 0 define xε ∈ `2 by xεk = xk 1xk>ε. By the
dominated convergence theorem, xε → x in `2 as ε → 0. Hence, since the map G2 defined
in Remark 4.4.3 is continuous, also G2(xε) ⇒ G2(x). This means that for any point process
ζ =

∑
k δxk such that x ∈ `2,

Gε(ζ) = G2(xε)⇒ G2(x) = G(ζ),

which gives (4.4.4).
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Recall that if LX ,LY are laws of random variables X,Y defined on the same probability
space, then ρ(LX ,LY )3 < E|X − Y |2 (c.f. [13, Theorem 11.3.5]). Thus

P [ρ(Gε(Nn), G(Nn)) > δ] 6 P

Eω

∣∣∣∣∣a−2
n

n∑
k=1

ξ2
k 1ξ2k6εa

2
n
(2ϑk − 1)

∣∣∣∣∣
2

> δ3


= P

[
E(2ϑ1 − 1)2a−4

n

n∑
k=1

ξ4
k 1ξ2k6εa

2
n
> δ3

]
,

since (2ϑk−1)k is a sequence of mean 0 i.i.d. variables independent of the environment. Denote
C = E(2ϑ1 − 1)2, then

lim sup
n→∞

P [ρ(Gε(Nn), G(Nn)) > δ] 6 lim sup
n→∞

P

[
a−4
n

n∑
k=1

ξ4
k 1ξ2k6εa

2
n
>
δ3

C

]

6
C

δ3
lim sup
n→∞

a−4
n nE

[
ξ4
1ξ6ε1/2an

]
.

As we have seen in the proof of Proposition 4.4.1, the expected value present above is domin-
ated by an expression asymptotically equivalent to 4ε2−β/2n−1a4

n, thus

lim sup
n→∞

P [ρ(Gε(Nn), G(Nn)) > δ] 6
4C

δ3
ε2−β/2,

which proves (4.4.5).
Therefore G(Nn)⇒ G(N∞). Now the claim of the theorem follows from Proposition 4.4.1

and Lemmas 4.4.5 and 4.3.3.

4.4.2 Moderately sparse random environment

Proof of Theorem 4.2.1. Let µn,ω denote the quenched law of (Tn − EωTn)/a2
n.

Since Eξ < ∞, χ = (Eξ)−1 is well defined. Let N∞ =
∑

n δxn be a Poisson point process
as in Theorem 4.4.4 and let Nχ

∞ =
∑

n δχ2/βxn
. Then Nχ

∞ is a Poisson point process with
intensity βχx−β/2−1dx/2. Putting

φχn(ω)(·) = φχn,ω(·) = Pω
[
a−2
n (TSχn − EωTSχn) ∈ ·

]
= Pω

[
(aχn/an)2a−2

χn(TSχn − EωTSχn) ∈ ·
]
,

where Sχn := Sbχnc, it follows from Lemma 4.4.5, Theorem 4.4.4, and the convergence
aχn/an → χ1/β that φχn ⇒ G(Nχ

∞).
It remains to show that

a−4
n Varω

[
(TSχn − EωTSχn)− (Tn − EωTn)

]
= a−4

n Varω
[
TSχn − Tn

] P→ 0,

from which it follows, by Lemma 4.4.5, that µn ⇒ G(Nχ
∞).
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Observe that on the event {n 6 Sχn}, for any k such that Sk 6 n,

Varω
[
TSχn − Tn

]
=

Sχn∑
j=n+1

Varω [Tj − Tj−1] 6
Sχn∑

j=Sk+1

Varω [Tj − Tj−1]

= Varω
[
TSχn − TSk

]
and similarly on {Sχn 6 n} for any k such that Sk > n,

Varω
[
TSχn − Tn

]
6 Varω

[
TSk − TSχn

]
.

Therefore for any δ > 0 and ε > 0,

P
[
a−4
n Varω

[
TSχn − Tn

]
> δ
]
6 P [|Sχn − n| > εn]

+ P
[
a−4
n Varω

[
TSbχnc+bεnc − TSχn

]
> δ
]

+ P
[
a−4
n Varω

[
TSχn − TSbχnc−bεnc

]
> δ
]

= P

[∣∣∣∣Sχnχn − 1

χ

∣∣∣∣ > ε

χ

]
+ 2P

[
a−4
n Varω [TSεn ] > δ

]
.

The first term tends to 0 by the law of large numbers (recall 1/χ = Eξ). To estimate the
second, note that by Schwartz inequality,

Varω [TSεn ] = Varω

[
T lSεn + T rSεn

]
6 2Varω

[
T lSεn

]
+ 2Varω

[
T rSεn

]
.

By (4.3.2),

Varω
[
T rSεn

]
=

εn∑
k=1

VarωTrk =

εn∑
k=1

2

3
(ξ4
k − ξ2

k) 6
εn∑
k=1

ξ4
k,

and furthermore a−4
n

∑εn
k=1 ξ

4
k ⇒ ε−4/βLβ/4 with respect to P, while by Lemma 4.3.3 we have

a−4
n Varω

[
T lSεn

] P→ 0. Therefore

lim sup
n→∞

P
[
a−4
n Varω [TSεn ] > δ

]
6 P

[
Lβ/4 >

δ

2ε4/β

]
.

The last expression can be made arbitrary small by taking sufficiently small ε.

4.4.3 Strong sparsity: preliminaries

From now on we assume that Eξ = ∞. This case is technically more involved, however the
underlying principle remains the same. Denote the first passage time of S via

νn = inf {k > 0 : Sk > n} .

Recall that we write
mn = nE [ξ 1ξ6an ]
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and we denote by (cn)n∈N the asymptotic inverse of (mn)n∈N, i.e. any increasing sequence of
real numbers such that

lim
n→∞

cmn/n = lim
n→∞

mcn/n = 1.

Let
dn = 1/P[ξ > n].

Lemma 4.4.6. Assume (4.2.1). Under the introduced notation adn/n→ 1.

Proof. Since the sequence (an)n∈N is asymptotically unique, we can take

an = inf{x : P[ξ > x] 6 1/n}.

Then
adn = inf{x : P[ξ > x] 6 P[ξ > n]}.

In particular n > adn . By the merit of regular variation of P[ξ > x] we have that for any
ε > 0, P[ξ > (1 − ε)n] > P[ξ > n] for sufficiently large n. This secures adn > (1 − ε)n for
sufficiently large n and thus concludes the proof since ε > 0 is arbitrarily small.

From the above lemma, by regular variation of an, we have that aCdn ∼ C1/βn for any
constant C > 0.

As one may expect, Sn grows at a scale mn and thus νn must grow at a scale cn (in the
sense of a limit theorem which we will soon make precise). For our purposes we need to justify
that Sn/mn and νn/cn converge jointly with some other characteristics of the trajectory of S.
For this reason we will need to use the setting of càdlàg functions. Recall that D↑ stands for
the space of non-decreasing right continuous functions that have a left limit at each point. For
h ∈ D↑ we define h← ∈ D via

h←(t) = inf{s : h(s) > t}.

ConsiderM =Mp((0,∞]× [0,∞)). Let M : D↑ →M be given via

M(h) =
∑
k

δxk ⊗ δtk ,

where for h ∈ D↑, {tk}k∈N are the discontinuity points of h and xk = h(tk)− h(t−k ) is the size
of the jump at tk.

Lemma 4.4.7. The function M : D↑ →M is continuous with respect to J1 topology.

Proof. Let fn, f ∈ D↑ be such that fn → f in J1 topology. For any nonnegative, continuous
function ϕ : (0,+∞]× [0,+∞)→ R with compact support we can find ε > 0 and T > 0 such
that ϕ(x, t) = 0 if x 6 ε or t > T . Since f ∈ D↑, it has only finitely many jumps on the
interval [0, T ] that are greater than ε, therefore∫

ϕ(x, t)Mf(dx, dt) =
N∑
k=1

ϕ(xk, tk)
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38 Chapter 4. Weak quenched limit theorems

for some N , t1 < · · · < tN < T and xk > ε.
By the definition of J1 topology, there exists a sequence of continuous increasing functions

λn : (0,∞)→ (0,∞) such that

sup
t∈[0,T ]

|λn(t)− t| → 0, sup
t∈[0,T ]

|fn(t)− f(λn(t))| → 0. (4.4.6)

For n sufficiently large, supt∈[0,T ] |λn(t)− t| < T − tN , which means that f ◦ λn has exactly N
jumps on the interval [0, T ), at times λ−1

n (tk). Moreover, for large enough n, supt∈[0,T ] |fn(t)−
f(λn(t))| < ε/3, from which it follows that fn cannot have jumps bigger than ε apart from
the discontinuity points of f ◦ λn.

Fix k ∈ {1, . . . N}. It follows from (4.4.6) that for n large enough fn does have a jump at
λ−1
n (tk), denote it by xnk , and observe that xnk → xk as n→∞; in particular xnk > ε for large
n. It also follows that λ−1

n (tk)→ tk as n→∞. This means that for n sufficiently large∫
ϕ(x, t)Mfn(dx,dt) =

N∑
k=1

ϕ(xnk , λ
−1
n (tk))

and the last expression tends to
∫
ϕ(x, t)Mf(dx,dt) as n→∞, which gives Mfn →Mf .

Consider a random element ofM given by

Λn =
∞∑
j=1

δξj/an ⊗ δj/n

and random elements of D↑ defined via

Ln(t) = Sbntc/an for β < 1 and L̃n(t) = Sbntc/mn for β = 1. (4.4.7)

Recall Υ: D↑ → R defined in (4.2.5).

Lemma 4.4.8. If β < 1, then(
Ln,Λn,

νn
dn
,
Sνn−1

n

)
⇒ (L,M(L), L←(1),Υ(L)) (4.4.8)

in (D, J1)×M× R× R, where L = (Lt)t>0 is a strictly increasing β-stable subordinator with
Lévy measure given by ν(x,+∞) = x−β.

If β = 1, then (
L̃n,

νn
cn
,
Sνn−1

n

)
⇒ (id, 1, 1) (4.4.9)

in (D, J1)× R× R, where id : R+ → R+ is the identity function.

Proof. Consider first β < 1. By an appeal to standard functional weak convergence to stable
Lévy motion [26, Corollary 7.1],

Ln ⇒ L in (D, J1).
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Note that
Λn = M(Ln)

and the function M is J1-continuous by Lemma 4.4.7. Moreover,

νn
dn

= L←dn

(
n

adn

)
and the map h 7→ h← is continuous in M1 topology by [30]. In what follows, we will use
notation introduced in [29]. For h ∈ D let h− be the lcrl (left-continuous, having right-hands
limits) version of h, that is, h−(t) = limε→0+ h(t− ε) and h−(0) = 0. Similarly, let h+ denote
rcll version of a lcrl path. Let Φ : D↑ → D be given by

Φ(h) = (h− ◦ (h←)−)+.

Finally, observe that for any k ∈ N, Φ(Ldn) on the set [Sk/adn , Sk+1/adn) is constant and
equal to Sk/adn , therefore

Sνn−1

adn
= Φ (Ldn)

(
n

adn

)
.

By [29], Φ is J1-continuous on D↑↑ ⊂ D, the set of strictly increasing, unbounded functions.
Since L ∈ D↑↑ almost surely, by the continuous mapping theorem we have joint convergence
in distribution

(Ln,M(Ln), L←n ,Φ(Ln))→ (L,M(L), L←,Φ(L))

in (D, J1)×Mp((0,∞]× [0,∞))× (D,M1)× (D, J1). By Skorokhod’s representation theorem
we may assume that the above convergence holds almost surely.

Since the limiting processes admit no fixed discontinuities, Proposition 2.4 in [29] gives

νn
dn
→ L←(1) and

Sνn−1

adn
→ Φ(L)(1) = Υ(L)

almost surely.
The case β = 1 is similar and follows from the fact that by [26, Corollary 7.1] and properties

of J1 topology,
L̃n ⇒ id in (D, J1).

One can combine this with

νn
cn

= L̃←cn

(
n

mcn

)
,

Sνn−1

mcn

= Φ
(
L̃mn

)( n

mcn

)
,

and the arguments presented in the case β < 1 to get the desired claim.

Remark 4.4.9. Observe that all information on the sequence (ξk)k is carried by the process Λn
and therefore by Ln or, equivalently, L̃n. We may thus assume that our space holds random
variables U (k)

n , ϑk as described in Section 4.4.1 and at the same time the convergence given in
Lemma 4.4.8 holds almost surely.
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Lemma 4.4.10. Assume that (4.2.1) holds true. If β < 1, then

n−4Varω

[
T rSνn−1

− EωT
r
Sνn−1

−
νn−1∑
k=1

ξ2
k(2ϑk − 1)

]
P→ 0.

If β = 1 and Eξ =∞, then

a−4
cn Varω

[
T rSνn−1

− EωT
r
Sνn−1

−
νn−1∑
k=1

ξ2
k(2ϑk − 1)

]
P→ 0.

Proof. One can use the same arguments as in the proof of Proposition 4.4.1. First consider
β ∈ (0, 1). By tightness of {νn/dn}n∈N we can choose C > 0 to make the probability P[νn >

Cdn] arbitrarily small. Next, on the event {νn 6 Cdn},

Varω

[
T rSνn−1

− EωT
r
Sνn−1

−
νn−1∑
k=1

ξ2
k(2ϑk − 1)

]
6 Varω

[
Cdn∑
k=1

(
Uξk − 2ξ2

kϑk
)]
.

From here, since aCdn ∼ C1/βn, one argues as in the proof of Proposition 4.4.1 to show that∑
k∈I1n

ξ4
k

n4
Varω

[
Uξk
ξ2
k

− 2ϑk

]
P→ 0 and

∑
k∈I2n

ξ4
k

n4
Varω

[
Uξk
ξ2
k

− 2ϑk

]
P→ 0,

where I1
n = {k 6 Cdn : ξk > εn}, I2

n = {k 6 Cdn : ξk 6 εn} with fixed ε > 0. In the
case β = 1 and Eξ = ∞ one can invoke the same arguments combined with the tightness of
{νn/cn}n∈N.

Lemma 4.4.11. Assume that (4.2.1) holds true. If β ∈ (0, 1), then

n−4VarωT
l
Sνn

P→ 0.

If β = 1 and Eξ =∞, then
a−4
cn VarωT

l
Sνn

P→ 0.

Proof. Consider the case β < 1. Take any C > 0 and write

P
[
n−4VarωT

l
Sνn

> ε
]
6 P [νn > Cdn] + P

[
VarωT

l
S[Cdn]

> εn4
]
.

Since aCdn ∼ C1/βn, an appeal to Lemma 4.3.3 shows that the second term tends to 0 as
n → ∞. The first term can be made arbitrarily small by taking C > 0 sufficiently large. In
the case β = 1 we can use an analogous argument with dn replaced with cn.

For the purpose of the next lemma. let ({U0
n}n∈N, ϑ0) be, as before, a copy of ({Un}n∈N, ϑ)

given by the claim of Lemma 4.3.1 independent of the environment.

Lemma 4.4.12. Assume that (4.2.1) and (4.2.2) hold true for β 6 1 and Eξ =∞. Then

U0
n−Sνn−1

− EωU
0
n−Sνn−1

n2
− (1− Ξ)2(2ϑ0 − 1)

P→ 0,

where Ξ = Υ(L) for β < 1 and Ξ = 1 for β = 1.
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Proof. By the merit of Remark 4.4.9, Sνn−1/n→ Ξ, P-almost surely. Secondly, by a standard
application of the key renewal theorem [14, Theorem 2.6.12], the condition Eξ = ∞ implies
that n− Sνn−1

P→∞. The claim of the lemma follows from the fact that

U0
n−Sνn−1

− EωU
0
n−Sνn−1

n2
− (1− Ξ)2(2ϑ0 − 1) =

−
(

1− Sνn−1

n

)2

+ (1− Ξ)2 +

(
1− Sνn−1

n

)2 U0
n−Sνn−1

(n− Sνn−1)2
− (1− Ξ)22ϑ0

and Lemma 4.3.1.

4.4.4 Strong sparsity: β = 1

We will now focus on the case when β = 1 and Eξ = ∞. By Lemmas 4.4.5, 4.4.10, 4.4.11,
and 4.4.12, it is sufficient to study the quenched behaviour of

∑νn−1
k=1 ξ2

k(2ϑk − 1).

Proof of Theorem 4.2.2. Fix ε > 0. On the set {|νn − cn| 6 εcn}, νn∑
k=cn+1

ξ2
k(2ϑk − 1)

2

6 max
m:|m−cn|<εcn

 m∑
k=cn+1

ξ2
k(2ϑk − 1)

2

=st max
m<εcn

(
m∑
k=1

ξ2
k(2ϑk − 1)

)2

and by Doob’s maximal inequality,

Pω

 max
m<εcn

(
m∑
k=1

ξ2
k(2ϑk − 1)

)2

> δ

 6 δ−1Eω

(
εcn∑
k=1

ξ2
k(2ϑk − 1)

)2

= δ−1E(2ϑ− 1)2
εcn∑
k=1

ξ4
k.

Observe that

a−4
cn

εcn∑
k=1

ξ4
k = ε4(1 + o(1))

εcn∑
k=1

ξ4
k/a

4
εcn .

Since the sequence on the right hand side is tight in n, it follows that

a−4
cn Eω

( νn∑
k=cn+1

ξ2
k(2ϑk − 1)

)2
P→ 0.

In a similar fashion,

a−4
cn Eω

( cn∑
k=νn+1

ξ2
k(2ϑk − 1)

)2
P→ 0.

Therefore the weak limit of the quenched law of (Tn − EωTn)/a2
cn will coincide with the limit

of

Pω

[
cn∑
k=1

ξ2
k(2ϑk − 1)/a2

cn ∈ ·

]
.

The weak limit of the latter is G(N), which follows from the proof of Theorem 4.2.1.
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4.4.5 Strong sparsity: β < 1

Proof of Theorem 4.2.3. Let µn,ω denote the quenched law of (Tn − EωTn)/n2. Then

µn,ω(·) = Pω

[
Tn − TSνn−1 − Eω[Tn − TSνn−1 ]

n2
+
TSνn−1 − Eω[TSνn−1 ]

n2
∈ ·

]
To treat the second term under the probability we can, similarly as previously, decouple the
times that the random walker spends between consecutive Sk’s for k 6 n. The first part will
be controlled with the help of Lemma 4.4.12. Let ({U0

n}, ϑ0) be, as before, a copy of ({Un}, ϑ)

given by the claim of Lemma 4.3.1 independent of the environment. Then U0
n−Sνn−1

has, under
Pω, the same distribution as the time the walk spends in [Sνn−1, n) after reaching Sνn−1 and
before reaching n. By Lemma 4.4.11 and Lemma 4.4.5 the weak limit of µn,ω is the same as
that of

µ̄n,ω(·) = Pω

[
U0
n−Sνn−1

− EωU
0
n−Sνn−1

n2
+
T rSνn−1

− Eω[T rSνn−1
]

n2
∈ ·

]
.

Recall the random functions Ln given in (4.4.7) and that for a càdlàg function h we denote
by (xk(h), tk(h))k an arbitrary enumeration of its discontinuities, i.e. xk(h) = h(tk)− h(t−k ) >

0, where tk(h) = tk. Note that, with Υ given in (4.2.5), one has by the merit of Lem-
mas 4.4.5, 4.4.10, 4.4.11, and 4.4.12 that the limit of µ̄n,ω will coincide with the limit of

Fn(·) = Pω

[
a2
dn

n2
(1−Υ(Ldn))2(2ϑ0 − 1) +

a2
dn

n2

∑
k

xk(Ldn)2(2ϑk − 1)1Ldn (tk)<n/adn
∈ ·

]
.

It is enough to show that Fn ⇒ F (L). To achieve that one uses the same approach as in the
proof of Theorem 4.4.4. Namely by considering, for ε > 0,

Fnε (·) = Pω

[
a2
dn

n2
(1−Υ(Ldn))2(2ϑ0 − 1)

+
a2
dn

n2

∑
k

xk(Ldn)2(2ϑk − 1)1xk(Ldn )>ε 1Ldn (tk)<n/adn
∈ ·

]
.

For fixed ε > 0, Fnε → F∞ε , where

F∞ε (·) = Pω

[
(1−Υ(L))2(2ϑ0 − 1) +

∑
k

xk(L)2(2ϑk − 1)1xk(L)>ε 1L(tk)61 ∈ ·

]

since associated point processes converge and adn/n→ 1. Then we show that F∞ε ⇒ F (L) as
ε→ 0. We finally prove that (4.4.5) also holds in this context, since

lim sup
n→∞

P [ρ(Fnε , F
n) > δ] 6 lim sup

n→∞
P

[∑
k

xk(Ldn)1Ldn (tk)<n/adn
>

δ3n4

Cε3a4
dn

]

and the last expression tends to 0 as ε→ 0, because n/adn → 1 and Ldn → L a.s. in J1.
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4.5 Absence of a strong limit

4.5.1 An auxiliary process X and scheme of the proof

Our aim now is to prove Theorem 4.2.4 stating that the strong limit in distribution does not
exist, that is for κn given in (4.2.6) and for P -a.e. ω there is no random variable Yω such that

Tn − EωTn
κn

⇒ Yω, n→∞. (4.5.1)

Before going into the details of the proof, let us explain its scheme. We will prove that there
is a subset Ω0 ⊂ Ω of measure 1 such that for every ω ∈ Ω0 one can find an infinite subsequence
of integers (km)m∈N (depending on ω) for which the values of ξkm+1 are exceptionally large.
The time TSkm+1

− TSkm that the walk needs to move from Skm to Skm+1 is then either much
bigger or comparable with TSkm and must affect the limit Yω. As a consequence, the random
variable Yω satisfies distributional equations which do not have any nontrivial solutions (see
(4.5.19) and (4.5.20) below); this leads to the absence of the strong quenched limit.

Although the general idea is relatively easy to explain, since we have to deal with a.e. ω,
the details are quite tedious. We start below with a general construction and then pass to
a detailed proof for the case β < 1, keeping general notation for as long as possible. Finally
we will study the other case.

For technical reasons, instead of the process X we need to consider a slightly different
process X = (Xk)k∈N, whose trajectory contains independent pieces. We start by construct-
ing a favourable environment of probability one. For this purpose consider two increasing
sequences (pn)n∈N, (qn)n∈N diverging to +∞ and satisfying

2pn < qn < pn+1/2, pn/qn → 0, and
aqn
a2pn

> nθ (4.5.2)

for some θ > 1/β. Notice that one may take e.g. pn = 22n , qn = pn+1/4.
The trajectory of the random walk X cannot be divided into independent pieces with

respect to P, because the process can have large excursions to the left and the environment
is not homogeneous. To remedy that we will censor the left excursions of X that become too
large. We introduce a new process X = (Xk)k∈N. This process essentially behaves as the
previous one and evolves in the same environment, with a small difference. Namely after X
reaches Sqn and before it reaches S2qn , we put a barrier at point Spn , i.e. the process cannot
come back below Spn . However, this barrier is removed when X hits S2qn . Of course we can
couple both processes on the same probability space by removing from X all left excursions
from Spn that occur after hitting Sqn and before reaching S2qn .

For any k, we define the random variables T k, Tk, T
r
k, T

l
k in an obvious way, e.g.

T k = inf{j : Xj = k}, Tk = TSk − TSk−1
.

Then Trk = Trk for every k and Tlk = Tlk for k /∈
⋃
n(qn, 2qn]. Note that for k ∈ (qn, 2qn], Tk−Tk

is the time that the process X spends below Spn after hitting Sk−1 and before reaching Sk.
The next lemma ensures that asymptotic properties of the processes X and X are comparable.
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Lemma 4.5.1. For any ε ∈ (0, 1) and P-a.e. ω there is N = N(ω, ε) such that∑
qn<k62qn

Eω(Tk − Tk) < εn (4.5.3)

for n > N . Moreover
Tn = Tn a.s. for large (random) n.

Proof. Fix k ∈ (qn, 2qn]. To describe the quenched mean of Tk − Tk = Tlk − Tlk we need to
calculate the time the trajectory X, after it hits Sk−1, but before reaching Sk, spends below
Spn . For this purpose we proceed as in the proof of Lemma 2.3.3, that is we decompose

Tk − Tk =

Mk∑
m=1

Nm∑
j=0

Fpn(j,m), (4.5.4)

where Mk denotes the number of times the walk visits Spn from the right in the time in-
terval (TSk−1

, TSk), Nm is the number of consecutive left excursions from Spn after hitting it
from the right, and Fpn(j,m) is the length of the corresponding excursion. Note that Nm is
geometrically distributed with mean ρpn and variance ρpn(1+ρpn). Thus, by formula (2.3.14),

Eω

[ Nm∑
j=0

Fpn(j,m)

]
= ρpnEωFpn = 2Wpn (4.5.5)

Next, observe that for any m > 0, Pω [Mk = m] = rsm−1(1− s), where

r = P
Sk−1
ω

[
TSpn < TSk

]
and, invoking once again the gambler’s ruin problem,

s = P
Spn+1
ω

[
TSpn < TSk

]
= 1− 1

ξpn+1
P
Spn+1
ω

[
TSpn > TSk

]
.

We may easily calculate the mean of Mk and use the formulae (2.2.5) to express it in terms
of the environment. We get, after simplifying,

EωMk =
r

1− s
= ξkΠpn+1,k−1, (4.5.6)

Therefore, by (2.2.1), (4.5.5) and (4.5.6),

Eω
[
Tk − Tk

]
= 2ξkΠpn+1,k−1Wpn . (4.5.7)

Now we are ready to prove (4.5.3). We have

P

[ ∑
qn<k62qn

Eω(Tk − Tk) > εn
]
6 ε−γn

∑
qn<k62qn

E
[
2ξkΠpn+1,k−1Wpn

]γ
6 Cε−γn(Eργ)qn−pn ,

where γ ∈ (0, 1) is as in (4.2.2). Then, by the Borel-Cantelli lemma,

P

[ ∑
qn<k62qn

Eω(Tk − Tk) > εn i.o.
]

= 0,
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which gives (4.5.3). Finally we write

P[Tk 6= Tk] = E
[
Pω[Tk − Tk > 1]

]
6 E

[
Eω(Tk − Tk)

]
6 C

(
Eργ

)k−pn
to infer our final claim by yet another appeal to the Borel-Cantelli lemma.

The advantage of introducing the new process X is that it behaves similarly to X and
from the point of view of limit theorems this change is indistinguishable. However, here one
can indicate independent pieces: {Xk}k∈(TSqn ,TS2qn

] are P-independent.

4.5.2 Proof of Theorem 4.2.4

From now on we assume that β < 1; in particular Eξ = ∞. We are ready to describe the
required properties of the environment. The definition of the sets below depends on several
parameters, but first of all it depends on our hypothesis on ξ (for β > 1 we will choose slightly
different sets). Given d < D, b < B, and ε > 0 let

Un(d,D, b,B, ε) =

{
∃k ∈ (qn, 2qn]

Sk − S2pn

ak+1
∈ (d,D),

Eω[G
2
k]

ak+1
6 ε,

ξk+1

ak+1
∈ (b, B)

}
,

where Gk is the length of the left excursion of X from Sk before hitting Sk + 1. Of course
EωGk 6 EωGk and VarωGk 6 EωG

2
k. We want to consider environments which belong to

infinitely many sets Un. However, given ω, we want to have some freedom of choosing all the
parameters. The lemma below justifies that the measure of these environments is one.

Lemma 4.5.2. Assume that conditions (4.2.1) and (4.2.2) are satisfied. Then the event

U =
⋂{

lim sup
n

Un(d,D, b,B, ε) : d,D, b,B ∈ Q+, d < D, b < B, ε > 0

}
has probability one.

Proof. Since in the above formula the intersections are essentially over a countable set of
parameters (one can obviously restrict to the rational parameter ε), it is sufficient to prove
that for fixed parameters d < D, b < B and ε > 0,

P

[
lim sup

n
Un

]
= 1,

for Un = Un(d,D, b,B, ε). Observe that the events {Un}n∈N are independent, because Un de-
pends only on {ωj}j∈[pn,2qn] and thanks to (4.5.2) the sets {[pn, 2qn]}n∈N are pairwise disjoint.
Thus, invoking the Borel-Cantelli Lemma, it is sufficient to prove that there is δ0 > 0 such
that for large indices n,

P[Un] > δ0. (4.5.8)
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We need to estimate probabilities of all the events which appear in the definition of Un.
Denote

V 1
k = {(Sk − S2pn)/ak+1 ∈ (d,D)} ,

V 2
k =

{
EωG

2
k/ak+1 6 ε

}
,

V 3
k+1 = {ξk+1/ak+1 ∈ (b, B)} .

(4.5.9)

To estimate the probability of V 1
k , observe that thanks to (4.5.2) we have ak−2pn/ak+1 → 1

for any k ∈ (qn, 2qn]. Therefore, since β < 1,

P[V 1
k ] = P

[∑
2pn<j6k ξk

ak−2pn

·
ak−2pn

ak+1
∈ (d,D)

]
n→∞−−−→ δ ∈ (0, 1).

Recalling that EωG
2
k 6 EωG

2
k, which is a stationary sequence, we obtain EωG

2
k/ak

P→ 0, i.e.
P[V 2

k ] → 1. Next, observe that jP [ξj/aj ∈ (b, B)] → δ′ > 0 as j → ∞. Let us introduce an
auxiliary family of sets

V 4
k = {∀j ∈ (k, 2qn) ξj/aj /∈ (b, B)}.

For large n,

P[V 4
k ] =

2qn∏
j>k

P[ξj/aj /∈ (b, B)] >
2qn∏
j>k

(
1− 2δ′

j

)
>

(
1− 2δ′

qn

)2qn−k
> e−3δ′ .

Observe also that the sets {V 3
k+1 ∩V 4

k+1}k∈(qn,2qn] are pairwise disjoint. Therefore, for large n,

P[Un] > P

[ ⋃
qn<k62qn

V 1
k ∩ V 2

k ∩ V 3
k+1 ∩ V 4

k+1

]
=

∑
qn<k62qn

P
[
V 1
k ∩ V 2

k

]
P
[
V 3
k+1

]
P
[
V 4
k+1

]
>
δδ′e−3δ′

4

∑
qn<k62qn

1

k
∼ δδ′e−3δ′ log 2

4
.

In conclusion, the probabilities of Un are bounded from below, which entails (4.5.8) and
completes the proof.

Proof of Theorem 4.2.4 for β < 1. In view of our hypothesis (4.5.2), the Borel-Cantelli lemma
yields

P
[
∃ε > 0 S2pn > aqnε i.o.

]
= 0.

Therefore, invoking Lemma 4.5.2, the set

U ∩
{
∃ε > 0 S2pn > aqnε i.o.

}c (4.5.10)

has probability 1. From now on we fix ω from the event above which also satisfies the claim
of Lemma 4.5.1.

58:10131



4.5. Absence of a strong limit 47

Assume that, for fixed ω,

Tn − EωTn
κn

⇒ Yω n→∞, (4.5.11)

for some random variable Yω.
We fix parameters d < D, b < B and ε > 0. Take two sequences (nm)m∈N and km ∈

(qnm , 2qnm ] such that
ω ∈ V 1

km ∩ V
2
km ∩ V

3
km+1,

where all the sets were defined in (4.5.9). We can additionally assume (removing a finite
number of elements of the sequence if needed), that for all indices m

S2pnm < akmε. (4.5.12)

Lemma 4.5.1 says that, given ω, the difference (Tn − EωTn) − (Tn − EωTn) remains a.s.
bounded, hence (4.5.11) yields

Tn − EωTn
κn

⇒ Yω n→∞. (4.5.13)

Consider the following decomposition:

TSkm+1
− EωTSkm+1

κSkm+1

= vm · Vm + wm ·Wm + Zm, (4.5.14)

where

Vm =
TSkm − EωTSkm

κSkm
, vm =

κSkm
κSkm+1

,

Wm =
Trkm+1 − EωT

r
km+1

ξ2
km+1

, wm =
ξ2
km+1

κSkm+1

,

Zm =
Tlkm+1 − EωT

l
km+1

κSkm+1

.

(4.5.15)

Random variables Vm and (Wm, Zm) are Pω-independent. By (4.5.13), Vm converges in dis-
tribution to Yω, whereas Wm, by Lemma 4.3.1, converges to 2ϑ − 1. Therefore we need to
understand the behaviour of both deterministic (given ω) sequences (vm)m∈N, (wm)m∈N and
of the sequence of random variables (Zm)m∈N.

Let us start with estimates of vn and wn. In the case β < 1, κn = n2, hence

b2a2
km+1 6 κSkm+1

6 (D +B + ε)2a2
km+1

Using the estimates in the definition of the event Un(d,D, b,B, ε) gives

(1− δ) ·
(

d

D +B + ε

)2

6 vm 6 (1 + δ) ·
(
D + ε

d+ b

)2

(4.5.16)
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and

(1− δ) ·
(

b

D +B + ε

)2

6 wm 6 (1 + δ) ·
(
B

b

)2

. (4.5.17)

Now let us consider the sequence Zm. We want to prove that it converges to 0 in probability.
Since our argument will invoke the Chebyshev inequality, we need to bound the quenched
variance of Tlkm+1. Note that on the considered event, recalling (2.3.13), we have

VarωT
l
km+1 6 ξkm+1VarωGkm + ξ2

km+1(EωGkm)2 6 2εa3
km+1B

2. (4.5.18)

Observe that for any η > 0, using the Chebyshev inequality and (4.5.18), we have:

Pω[|Zm| > η] = Pω

[∣∣∣Tlkm+1 − EωT
l
km+1

∣∣∣ > ηκSkm+1

]
6

VarωT
l
km+1

η2κ2
Skm+1

6
2εB2

η2b4
a−1
km+1.

One can easily see that for any fixed d and D one can construct sequences (bm)m∈N,
(Bm)m∈N, (km)m∈N such that bm, Bm →∞, bm/Bm → 1 and inequalities (4.5.16) and (4.5.17)
hold. Then vm → 0, wm → 1 and Zm

Pω→ 0. Since the sequence (Vm)m is tight, we have

TSkm+1
− EωTSkm+1

κSkm+1

= vm · Vm + wm ·Wm + Zm ⇒ 2ϑ− 1.

So, if the limits (4.5.11), (4.5.13) exist, both must be equal to Yω = 2ϑ− 1.
Next, fixing all the parameters b, B, d,D observe that both sequences (vm)m, (wm)m are

bounded, therefore we can assume, possibly choosing their subsequences, that they are con-
vergent to some strictly positive v and w, respectively. Since the families of random variables
{Vm}m and {Wm}m are independent, we conclude

2ϑ− 1
d
= Yω

d
= v(2ϑv − 1) + w(2ϑw − 1), (4.5.19)

where ϑv, ϑw are independent copies of ϑ. However this equation cannot be satisfied e.g. by
(4.1.1). That leads to a contradiction and proves that the limit (4.5.11) cannot exist.

Proof of Theorem 4.2.4 for β > 1. We proceed similarly as in the previous case, but this time
we need to redefine the sets Un. Let

Un(b, B, ε) =

{
∃k ∈ (qn, 2qn]

Eω[G
2
k]

ak+1
6 ε,

ξk+1

ak+1
∈ (b, B)

}
.

Reasoning exactly as in the proof of Lemma (4.5.2) we prove that under conditions (4.2.1)
and (4.2.2), the event

U =
⋂{

lim sup
n

Un(b, B, ε) : b, B ∈ Q+, b < B, ε > 0

}
has probability one.
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We consider the formula (4.5.14) and since in this case κn = a2
n, by (4.5.15), we have

vm → 1 and b2 6 wm 6 B2,

because, by the strong law of large numbers, Smk+1/Smk converges to 1 a.s. Taking into
account (4.5.18) and the calculations below we have

Pω[|Zm| > η] 6
VarωT

l
km+1

η2κ2
Skm+1

6
2εa3

km+1B
2

a4
Skm+1

→ 0 a.s.

for any B, because by the strong law of large numbers an/aSn → 1 a.s. This proves Zm
Pω→ 0.

Now we can repeat the arguments from the previous proof. Fixing the parameters b and
B we conclude that (wm)m∈N is bounded, therefore we can assume that it converges to some
w 6= 0. Invoking (4.5.14), we obtain

Yω
d
= Yω + w(2ϑw − 1), (4.5.20)

where Yω and ϑw are independent. That leads us once again to a contradiction.
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Chapter 5

Favourite sites of a random walk in
moderately sparse random
environment

In this chapter we present the limit theorems for maximal local times of RWSRE under the
annealed measure. We consider only the case of moderately sparse environment, that is, we
assume that Eξ < ∞. The following is an extract from [19] with alterations done by the
author to keep consistency with other chapters.

5.1 Introduction

Let, for k 6 n,
Lk(n) = |{m 6 Tn : Xm = k}| (5.1.1)

be the local time, i.e. the number of times the walk visits k before reaching n. Our object of
interest is the limiting behaviour of the maximal local time, that is the variable maxk6n Lk(n),
as n → ∞. We shall present two cases in which an annealed limit theorem holds for this
sequence of variables, with Fréchet distribution in the limit.

As was described in Section 3.1 concerning limit theorems for hitting times, the shape
of these theorems depends on the interplay between the drift and the sparsity. A similar
dichotomy is seen for the local times, however the crucial assumption is no longer (3.1.6).

In the first case it is the drift that drives the limiting behaviour of local times. It may be
seen as a generalization of results obtained by Dolgopyat and Goldsheid in [12, Theorem 4]
in the setting of i.i.d. environment. However, the techniques used in [12] were different from
those presented here. In this chapter we follow the method proposed by Kesten et al. in [18]
when examining the hitting times, that is we rephrase the question posed for the walk into
the setting of an associated branching process. This method proves useful both in the case
of dominating drift and the complementary case, in which it is the tail behaviour of ξ that
determines the shape of the limit.

51
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52 Chapter 5. Favourite sites of RWSRE

Throughout this chapter we shall use a model slightly different from the one defined in
(1.1.3). That is, we put

ωk =

{
λn+1 if k = Sn for some n ∈ Z,
1/2 otherwise.

Observe that in (1.1.3) we allowed for the dependence between the length of k’th block and
the drift at Sk, which is its right end. In this chapter, when examining the case of dominating
drift, we allow for dependence between the length of the block and the drift at its left end. In
the case of dominating sparsity we shall assume ξ and λ to be independent, so that we only
change enumeration of drifts. Definition (1.1.3) used so far is the one given by Matzavinos et
al. in [20], while the setting used here is the same as in [6, 7]. This change of convention arises
naturally from time reversal coming with the associated branching process which we introduce
in Section 5.3.

The chapter is organised as follows: in Section 5.2 we present the statement of our results.
Section 5.3 introduces the branching process associated with the walk and presents some of
its properties. The proofs of the main theorems are given in Sections 5.4 and 5.5.

5.2 Annealed limit laws for the maximal local time

In this section we present our results. Relations (2.2.6) remain our standing assumptions, i.e.
we examine the RWSRE which is transient to +∞. We consider two sets of assumptions:

Assumptions (A): For some α ∈ (0, 2),
• Eρα = 1;
• Eρα log+ ρ <∞;
• the distributions of ρ and log ρ are non-arithmetic;
• Eξ(α+δ)∨1 <∞ for some δ > 0;
• Eξαρα <∞.

Note that without loss of generality we may assume that α+ δ 6 2. In this case the limiting
behaviour of maxima is determined mostly by the parameter α, that is by properties of ρ; it
is a generalization of the result known for the walk in i.i.d. environment. We shall prove the
following:

Theorem 5.2.1. Under assumptions (A), there is a constant cα > 0 such that for all x > 0,

lim
n→∞

P
[

maxk6n Lk(n)

n1/α
> x

]
= 1− e−cαx−α .

It turns out that the crucial assumption in this case is that Eξα+δ <∞. Different behaviour
appears when ξ does not have high enough moments. Consider the following:

Assumptions (B): For some β ∈ [1, 2),
• P[ξ > x] ∼ x−β`(x) for some slowly varying `;
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5.2. Annealed limit laws for the maximal local time 53

• Eρβ+δ < 1 for some δ > 0;
• ξ and ρ are independent;
• if β = 1, assume Eξ <∞.

In this case we may also assume that β + δ 6 2. Observe that we do not assume that there
exists α such that Eρα = 1. However, if it does exist, then α > β and Eξα =∞. Since ξ has
regularly varying tails, a good scaling for maxima of (ξn)n∈N is a sequence (an)n∈N such that

lim
n→∞

nP[ξ > an] = 1. (5.2.1)

It turns out it is also a good scaling for maxima of L.

Theorem 5.2.2. Under assumptions (B), there is a constant cβ > 0 such that for all x > 0,

lim
n→∞

P
[

maxk6n Lk(n)

an
> x

]
= 1− e−cβx−β .

The exact forms of constants cα, cβ will be given during the proofs.

We conclude this section by remarking that in the moderately sparse environment it is
enough to consider the sequence of maximal local times along the marked points. Note that
(an)n∈N given by (5.2.1) is regularly varying with index 1/β.

Lemma 5.2.3. Assume that Eξ < ∞. If there exist constants c > 0, γ > 0 and a sequence
(b(n))n∈N which is regularly varying with index 1/γ such that for every x > 0,

lim
n→∞

P
[

maxk6Sn Lk(Sn)

b(n)
> x

]
= 1− e−cx−γ ,

then for every x > 0,

lim
n→∞

P
[

maxk6n Lk(n)

b(n)
> x

]
= 1− e−(c/Eξ)x−γ .

Proof. Denote, for n ∈ N,
νn = inf{k > 0 : Sk > n}.

Then the assumption Eξ <∞ and the law of large numbers guarantee that P-almost surely

νn
n

n→∞−−−→ 1

Eξ
.

Denote, for m ∈ N, M(m) = maxk6Sm Lk(Sm). Since Sνn−1 6 n < Sνn , we have, for any
ε > 0,

P
[
b(n)−1 max

06k<n
Lk(n) > x

]
> P

[
b(n)−1M(νn − 1) > x

]
> P

[
b(n)−1M(n(1/Eξ − ε)− 1) > x

]
− P [|1/Eξ − νn/n| > ε]

n→∞−−−→ 1− exp(−c(1/Eξ − ε)x−γ),
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54 Chapter 5. Favourite sites of RWSRE

where we used the fact that

b(n(1/Eξ − ε)− 1)

b(n)
→ (1/Eξ − ε)1/γ

since b(n) is regularly varying. Similarly,

P
[
b(n)−1 max

06k<n
Lk(n) > x

]
6 P

[
b(n)−1M(νn) > x

]
6 P

[
b(n)−1M(n(1/Eξ + ε)) > x

]
+ P [|1/Eξ − νn/n| > ε]

n→∞−−−→ 1− exp(−c(1/Eξ + ε)x−γ),

which ends the proof since ε > 0 is arbitrary.

5.3 Auxiliary results

Instead of examining the local times explicitly, we pass to a branching process associated
with RWSRE. In this section we describe the construction of this process and prove auxiliary
lemmas which we will use in both examined cases.

5.3.1 Associated branching process

An important property of a transient simple random walk on Z is its duality with a branching
process. Consider a walk (Xn)n∈N such that X0 = 0 and Xn → ∞ almost surely, evolving in
an environment ω = (ωk)k∈Z. Recall that, for n ∈ N,

Tn = inf{k ∈ N : Xk = n}

is the first passage time and, for k 6 n,

Lk(n) = |{m 6 Tn : Xm = k}|

is the local time, i.e. the number of times the walk visits site k before reaching n. First of all,
note that the transience of the walk implies that, almost surely, the walk spends only finite
time on the negative half-axis. That is, for any sequence bn →∞,

maxk<0 Lk(n)

bn
→ 0 P-a.s.

Therefore, when examining the limit theorems, we may restrict our analysis to the variables
Lk(n) for k > 0.

The visits to k > 0 counted by Lk(n) may be split into visits from the left and from the
right, that is,

Lk(n) = |{m 6 Tn : Xm = k}|
= |{m 6 Tn : Xm−1 = k − 1, Xm = k}|+ |{m 6 Tn : Xm−1 = k + 1, Xm = k}|.
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5.3. Auxiliary results 55

Figure 5.3.1: Exemplary path of a simple walk and corresponding realization of a branching
process. Immigrants (marked in red) correspond to arrivals to new sites. The subtrees corres-
pond to the excursions of the walk; the first excursion from 7 and its corresponding subtree
were marked in blue.

Moreover, since the walk is simple, it makes a step from k − 1 to k when it visits site k for
the first time. After that, it may make some excursions to the left from k; such an excursion
always begins with a step from k to k − 1 and ends with a step from k − 1 to k. Therefore,
to count all the visits the walk makes to given sites, it is enough to count its steps to the left.
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56 Chapter 5. Favourite sites of RWSRE

That is, for fixed n ∈ N and 0 6 k 6 n,

Lk(n) = 1 + |{m 6 Tn : Xm−1 = k, Xm = k − 1}|+ |{m 6 Tn : Xm−1 = k + 1, Xm = k}|

= 1 + Z̃k−1 + Z̃k,

where Z̃k = |{m 6 Tn : Xm−1 = k + 1, Xm = k}| is the number of visits to point k from the
right. The main observation is that the process given by Zk = Z̃n−k has a branching structure.
Every step from n− k to n− k− 1 occurs either before the walk discovered the site n− k+ 1,
or between consecutive steps from n− k + 1 to n− k. That is,

Zk+1
d
=

Zk+1∑
j=1

G
(j)
n,k,

where G(j)
n,k, for j 6 Zk, counts the number of steps from n− k to n− k − 1 between j’th and

j + 1’th step from n− k + 1 to n− k, and G(Zk+1)
n,k counts the number of steps from n− k to

n− k− 1 before the first visit to n− k+ 1. Observe that, due to the strong Markov property
of the walk, the variables G(j)

n,k are i.i.d., independent of Zk, and have geometric distribution
with parameter ωn−k. Therefore, Z = (Zk)k∈N is a branching process in random environment
with unit immigration; note that we do not count the immigrant, so that Z0 = 0. Moreover,
for any fixed n ∈ N,

(Lk(n))06k6n
d
= (1 + Zn−k+1 + Zn−k)06k6n . (5.3.1)

In particular, if X is a random walk in a sparse random environment, its associated branch-
ing process is a branching process in a sparse random environment (BPSRE). If in the above
construction we consider the walk stopped upon reaching a marked point Sn, the branch-
ing process starts from one immigrant and evolves in the environment divided into blocks of
lengths given by (ξn−k)k∈N; within the blocks the reproduction is given by the law Geo(1/2),
while the particles in the k’th marked generation are born with the law Geo(λn−k). When
examining the process Z, it is convenient – and valid, since the environment is given by an
i.i.d. sequence – to reverse the enumeration, so that the block lengths are given by (ξk)k∈N
and reproduction law in k’th marked point is Geo(λk). The process Z may be then defined
formally as follows: for any fixed environment ω, under Pω,

Z0 = 0,

Zk =

Zk−1+1∑
j=1

G
(j)
k ,

where the variables (G
(j)
k )j∈N are independent of Zk−1 and each other, and

G
(j)
k

d
= Geo(ωk) for ωk =

{
λn if k = Sn for some n ∈ N;
1/2 otherwise.

Whenever examining a BPSRE, we will distinct the population at marked generations with
bold letters, that is, for example, Zn = ZSn .
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Z1

ξ1

Z2
ξ2

Z3

ξ3

Z4

ZS4−1
Geo(λ4)

Geo(1/2)
ξ4

Z5

ξ5

Z6

ξ6

Figure 5.3.2: Schematic picture of the process Z. Horizontal blue lines represent marked
generations. Within each block between marked generations, the triangular area represents
progeny of immigrants that arrived in this block. The coloured region represents process Y 4.

Recall that by Lemma 5.2.3, it is enough to analyse the sequence of maximal local times
along the marked points. Due to (5.3.1) we have, for any n ∈ N,

max
06k6Sn

Lk(Sn)
d
= 1 + max

06k6Sn
(Zk + Zk+1). (5.3.2)

Therefore, to prove Theorems 5.2.1 and 5.2.2, we will examine the maximal generations of the
corresponding branching process.

For k ∈ N, we will denote by Y k the process counting the progeny of immigrants from
k’th block, i.e. those arriving at times Sk−1, Sk−1 + 1, . . . Sk − 1. Let, for j > 0, Y k

j denote
the number of descendants of these immigrants present in generation Sk−1 + j. Observe that
the process Y k starts with one immigrant at time j = 0; it evolves with unit immigration and
Geo(1/2) reproduction law up until time j = ξk − 1. The last immigrant arrives at this time,
and the particles at time j = ξk are born with the law Geo(λk). From there on the process
Y k evolves without immigration (see Figure 5.3.2).

We will use the convention that Y k
j = 0 for j < 0, so that

Zn =
∑
k∈N

Y k
n−Sk−1

.

Observe that the processes Y k are independent under Pω and identically distributed under P.
The branching process in a sparse random environment was studied in [7] for the purpose

of proving annealed limit theorems for the first passage times. An important observation is
that the transience of the walk implies quick extinctions of the branching process. Let

τ0 = 0, τn = inf{k > τn−1 : Zk = 0}
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58 Chapter 5. Favourite sites of RWSRE

be the extinction times (note that we only consider the extinctions at marked generations).
Observe that when the extinction occurs, the process starts anew from one immigrant. Thus
the sequence (τn− τn−1)n>1 is i.i.d. under P, and the extinction times split the process Z into
independent epochs. The following is Lemma 4.1 from [7]; it implies that the extinctions occur
rather often in the case of transient RWSRE.

Lemma 5.3.1. Assume that E log ρ < 0 and E log ξ < ∞. Then Eτ1 < ∞. If additionally
Eρε <∞ and Eξε <∞ for some ε > 0, then there exists c > 0 such that Eecτ1 <∞.

5.3.2 Estimates of the processes related to the environment

Define

R̄n = 1 + ρn + ρnρn+1 + · · · =
∞∑

k=n−1

Πn,k, (5.3.3)

for Πn,k defined in (2.2.1). Then the following relation holds:

R̄n = 1 + ρnR̄n+1. (5.3.4)

Moreover, the sequence (R̄n)n∈Z is stationary under P. Observe that if Eργ < 1 for some γ > 0,
then ER̄γ1 < ∞ (see the proof of Lemma 2.3.1 in [4]), whereas under (A), the distribution of
ρ satisfies the assumptions of Kesten-Goldie theorem (see [4, Theorem 2.4.4]), thus

P[R̄1 > x] ∼ cαx−α

for some constant cα. Therefore

P[R̄1 > x] 6 Cγx
−γ for some Cγ <∞ and all x > 0, (5.3.5)

whenever either Eργ < 1, or Eργ = 1 and Kesten-Goldie theorem holds for R̄1. As can be
seen in the proofs of Lemma 6 in [18] and Lemma 5.6 in [7], in the case of dominating drift
it is R̄1 from whom the total population of the process Z (which corresponds to first passage
times of the walk) inherits its annealed tail behaviour.

Let, for m ∈ N, the potential Ψ be defined as

Ψm,k = Πm,n for k ∈ [Sn, Sn+1). (5.3.6)

As we will see, maxima of the potential determine the limiting behaviour of maximal generation
of Z in the same way as R̄1 determines the asymptotics of the total population. Let

MΨ,m = max
k>Sm−1

(Ψm,k + Ψm,k+1). (5.3.7)

Then the sequence (MΨ,m)m∈N is stationary under P; denote by MΨ its generic element.
Observe that

MΨ,1 6 2 max
k>S1−1

Ψ1,k = 2 max
n>0

Π1,n 6 2R̄1,

thus
EMγ

Ψ <∞ whenever Eργ < 1. (5.3.8)
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5.3.3 Auxiliary lemmas

The following lemma, concerning a classic Galton-Watson process, will be used repeatedly to
estimate the growth of BPSRE in the unmarked generations.

Lemma 5.3.2. Let (Xn)n>0 be a Galton-Watson process with X0 = x0, reproduction law
Geo(1/2), and no immigrants, and let (X̄n)n>0 be an analogous process with unit immigration.
Then the following hold for any N ∈ N:

E
[
max
k6N

(Xk − x0)2

]
6 8Nx0, (5.3.9)

E
[
max
k6N

X̄2
k

]
6 16(N2 +Nx0 + x2

0). (5.3.10)

Proof. Since the process (Xk)k∈N is a martingale with mean x0, Doob’s maximal inequality
implies

E
[
max
k6N

(Xk − x0)2

]
6 4E(XN − x0)2 = 4VarXN .

Now, a standard calculation gives
VarXN = 2Nx0,

which implies (5.3.9).
Observe that X̄n = X ′n + In, where X ′ denotes the descendants of the initial x0 particles,

and I denotes the progeny of immigrants. The processes I and X ′ are independent, and X ′ has
the same distribution as X. Moreover, the process (X̄n)n∈N is a non-negative submartingale,
thus by Doob’s maximal inequality,

E
[
max
k6N

X̄2
k

]
6 4E

[
X̄2
N

]
= 4

(
VarX ′N + VarIN + (EX ′N + EIN )2

)
.

We have already examined the mean and variance of X ′N . To calculate moments of IN ,
we may express I as a sum of independent copies of X. Alternatively, we may use the duality
of I and a simple symmetric random walk. It implies that IN equals in distribution to the
number of times the walk hits 0 from the right when crossing the interval [0, N + 1] for the
first time. By (2.1.1), the probability that the walk passes from 0 to N + 1 without returning
to 0 from the right, is 1/(N + 1). Therefore IN ∼ Geo(1/(N + 1)), from which it follows that

EIN = N + 1, VarIN = N2 +N.

Hence
E
[
X̄2
N

]
= 2Nx0 +N2 +N + (x0 +N + 1)2 6 4(N2 +Nx0 + x2

0),

which ends the proof of (5.3.10).
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The next two lemmas will be of use to us both under assumptions (A) and (B). Therefore
we shall consider the following set of assumptions:

Assumptions (Γ): for some γ 6 2,
• Eργ 6 1 and (5.3.5) holds,
• Eξγ/2 <∞,
• Eργξγ/2 <∞.

Let Un be the progeny of the first immigrant residing in generation n, with the convention
U0 = 1, and denote Un = USn . For fixed N ∈ N, let Uk for k = 1, . . . , N be copies of the
process U = (Un)n∈N, evolving in the same environment and independent under Pω. That is,
(
∑N

k=1 U
k
n)n∈N is a BPSRE with N initial particles evolving without immigration. Although

the first part of the following lemma is analogous to results presented in [18, Lemma 3] and
[7, Lemma 5.6], we provide the full proof as it gives some insight into the properties of the
process U .

Lemma 5.3.3. Assume (Γ). Then for some constant C1,

P

[
N∑
k=1

∑
n>0

Ukn > x

]
6 C1N

γx−γ , (5.3.11)

P

[∑
n>0

∣∣∣∣∣
N∑
k=1

Ukn −NΠ1,n

∣∣∣∣∣ > x

]
6 C1N

γ/2x−γ . (5.3.12)

Moreover,

P

[
max
n>1

N∑
k=1

Ukn > x

]
6 C1N

γx−γ , (5.3.13)

P

[∑
n>1

N∑
k=1

max
Sn−16j<Sn

|Ukj − Ukn−1| > x

]
6 C1N

γ/2x−γ . (5.3.14)

Proof. For fixed n > 1, under Pω,

Un
d
=

USn−1∑
k=1

G
(n)
k ,

where G(n)
k are random variables with law Geo(λn), independent of USn−1 and each other. In

particular,
EωG

(n)
k = ρn, VarωG

(n)
k = ρn + ρ2

n.

Since in generations Sn−1+1, . . . Sn−1 the process evolves with offspring distributionGeo(1/2),
standard calculation gives

Eω[USn−1|Un−1] = Un−1 and Varω(USn−1|Un−1) = 2(ξn − 1)Un−1.
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This in turn implies

Eω[Un|Un−1] = ρnUn−1,

Eω[(Un − ρnUn−1)2|Un−1] = (ρn − ρ2
n + 2ρ2

nξn)Un−1.
(5.3.15)

In particular EωUn = Π1,n.
Observe that the processes Uk evolve without immigration and the extinction time of each

Uk is stochastically dominated by τ1, which is finite P-a.s. by Lemma 5.3.1. In particular,
with probability 1 the series

N∑
k=1

∑
n>0

Ukn

is indeed a finite sum. Recall the sequence R̄ defined in (5.3.3) and observe that, by (5.3.4),

N∑
k=1

∑
n>0

Ukn =

N∑
k=1

∑
n>0

Ukn(R̄n+1 − ρn+1R̄n+2)

=
∑
n>1

(
N∑
k=1

(Ukn − ρnUkn−1)

)
R̄n+1 +NR̄1

and thus ∑
n>0

(
N∑
k=1

Ukn −NΠ1,n

)
=
∑
n>1

(
N∑
k=1

(Ukn − ρnUkn−1)

)
R̄n+1.

Therefore

P

[∑
n>0

∣∣∣∣∣
N∑
k=1

Ukn −NΠ1,n

∣∣∣∣∣ > x

]
6 P

[∑
n>1

∣∣∣∣∣
N∑
k=1

Ukn − ρnUkn−1

∣∣∣∣∣ R̄n+1 > x

]

and

P

[
N∑
k=1

∑
n>1

Ukn > x

]
6 P

[∑
n>1

∣∣∣∣∣
N∑
k=1

(Ukn − ρnUkn−1)

∣∣∣∣∣ R̄n+1 > x/2

]
+ P[NR̄1 > x/2].

Observe that for any n > 1, R̄n+1 is independent of (Ukn − ρnUkn−1). Thus for any x > 0,

P

[∑
n>1

∣∣∣∣∣
N∑
k=1

(Ukn − ρnUkn−1)

∣∣∣∣∣ R̄n+1 > x

]
6
∑
n>1

P

[∣∣∣∣∣
N∑
k=1

(Ukn − ρnUkn−1)

∣∣∣∣∣ R̄n+1 > x/2n2

]

=
∑
n>1

∫
[0,∞)

P[R̄n+1 > x/2tn2]P

[∣∣∣∣∣
N∑
k=1

(Ukn − ρnUkn−1)

∣∣∣∣∣ ∈ dt
]

6 Cγ
∑
n>1

∫
[0,∞)

(x/2tn2)−γP

[∣∣∣∣∣
N∑
k=1

(Ukn − ρnUkn−1)

∣∣∣∣∣ ∈ dt
]

= 2γCγ x
−γ
∑
n>1

n2γE

∣∣∣∣∣
N∑
k=1

(Ukn − ρnUkn−1)

∣∣∣∣∣
γ

,
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where the second inequality follows from (5.3.5).
The relations (5.3.15) imply that for any fixed n, under Pω,

∑N
k=1(Ukn− ρnUkn−1) is a sum

of independent centered variables; in particular, using formulae (5.3.15), we obtain

Eω

(
N∑
k=1

(Ukn − ρnUkn−1)

)2

= NEω(Un − ρnUn−1)2

= N(ρn + 2ρ2
nξn − ρ2

n)EωUn−1

= N(ρn + 2ρ2
nξn − ρ2

n)Π1,n−1.

Therefore, conditional Jensen’s inequality and subadditivity of the function x 7→ xγ/2 (recall
γ 6 2) give

∑
n>1

n2γE

∣∣∣∣∣
N∑
k=1

(Ukn − ρnUkn−1)

∣∣∣∣∣
γ

6
∑
n>1

n2γE

Eω

(
N∑
k=1

(Ukn − ρnUkn−1)

)2
γ/2

= Nγ/2
∑
n>1

n2γE((ρn + 2ρ2
nξn − ρ2

n)Π1,n−1)γ/2

6 Nγ/2
∑
n>1

n2γ(Eργ/2 + 2Eργξγ/2)(Eργ/2)n−1.

The assumptions of the lemma guarantee that the series is convergent and thus for some
constant C > 0,

P

[∑
n>1

∣∣∣∣∣
N∑
k=1

(Ukn − ρnUkn−1)

∣∣∣∣∣ R̄n+1 > x

]
6 2γCγ x

−γ
∑
n>1

n2γE

∣∣∣∣∣
N∑
k=1

(Ukn − ρnUkn−1)

∣∣∣∣∣
γ

6 CNγ/2x−γ ,

which proves (5.3.12). Invoking (5.3.5) once again, we conclude that

P

[
N∑
k=1

∑
n>1

Ukn > x

]
6 P

[∑
n>1

(
N∑
k=1

(Ukn − ρnUkn−1)

)
R̄n+1 > x/2

]
+ P[NR̄1 > x/2]

6 CNγ/2(x/2)−γ + CγN
γ(x/2)−γ ,

which proves (5.3.11).
To show (5.3.13), decompose

P

[
max
j>0

N∑
k=1

Ukn > x

]
= P

[
max
n>0

max
Sn6j<Sn+1

N∑
k=1

Ukj > x

]

6 P

[∑
n>0

N∑
k=1

max
Sn6j<Sn+1

Ukj > x

]

6 P

[∑
n>0

N∑
k=1

(
Ukn + max

Sn6j<Sn+1

|Ukj − Ukn|
)
> x

]

6 P

[
N∑
k=1

∑
n>0

Ukn > x/2

]
+ P

[∑
n>1

N∑
k=1

max
Sn−16j<Sn

|Ukj − Ukn−1| > x/2

]
,
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which means that (5.3.13) follows from (5.3.11) and (5.3.14). To show (5.3.14), note that, by
Lemma 5.3.2,

Eω

[
max

Sn−16j<Sn
|Uj − Un−1|2

]
6 8ξnEωUkn−1 = 8ξnΠ1,n−1.

Therefore

P

[∑
n>1

N∑
k=1

max
Sn−16j<Sn

|Ukj − Ukn−1| > x/2

]
6
∑
n>1

P

[
N∑
k=1

max
Sn−16j<Sn

|Ukj − Ukn−1| > x/4n2

]

6
∑
n>1

(x/4n2)−γNγ/2E

(
Eω max

Sn−16j<Sn
|Uj − Un−1|2

)γ/2
6Nγ/2x−γ

∑
n>1

(4n)2γ8γ/2Eξγ/2(Eργ/2)n−1

=C ′Nγ/2x−γ ,

for some constant C ′ > 0, which proves (5.3.13) and (5.3.14).

Let Y = (Yn)n∈N be a copy of the process (Y 1
n )n∈N. That is, Y starts with one immigrant

in generation 0 and for the next ξ1 − 1 generations evolves as a Galton-Watson process with
unit immigration and reproduction law Geo(1/2). The last immigrant arrives in generation
ξ1 − 1; particles there reproduce with distribution Geo(λ1), giving birth to the first marked
generation Y1 = YS1 . From there on the process evolves without immigration, with particles
in each marked generation Yn = YSn being born with Geo(λn) distribution, and Geo(1/2) in
consecutive blocks of lengths given by ξn − 1 for n > 2.

Y1

ξ1

Y2
ξ2

Y3

ξ3

Y4

ξ4

Y5

ξ5

Figure 5.3.3: Schematic picture of the process Y . Horizontal blue lines represent marked
generations. The immigrants arrive only in the first block.

Lemma 5.3.4. Assume (Γ). Then for some constant C2,

P
[
max
n>1

Yn > x

]
6 C2x

−γ
(

E
(
EωY

2
ξ1−1

)γ/2
+ EYγ1

)
. (5.3.16)

If additionally Eξγ <∞ and Eξγργ <∞, then for some constant C3,

P
[
max
n>1

Yn > x

]
6 C3x

−γ . (5.3.17)
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Proof. We have

P
[
max
n>1

Yn > x

]
6 P

[
max
n<S1

Yn > x

]
+ P

[
max
n>S1

Yn > x

]
. (5.3.18)

For the first ξ1−1 generations Y evolves as a Galton-Watson process with unit immigration
and reproduction law Geo(1/2), therefore (Y 2

n )n<S1 is a submartingale with respect to Pω.
Using first Markov’s, then Jensen’s, and finally Doob’s maximal inequality, we obtain

P
[
max
j<S1

Yj > x

]
6 x−γE

(
max
j<S1

Yj

)γ
6 x−γE

(
Eω max

n<ξ1
Y 2
n

)γ/2
6 x−γE

(
4EωY

2
ξ1−1

)γ/2
.

If additionally Eξγ <∞, then by Lemma 5.3.2,

Eω max
n<ξ1

Y 2
n 6 16ξ2

1 ,

thus

P
[
max
j<S1

Yj > x

]
6 16γ/2Eξγx−γ .

To estimate the second term in (5.3.18), observe that

(YS1+j)j∈N
d
=

( Y1∑
k=1

Ukj

)
j∈N

,

where Uk’s are (independent under Pω) copies of the process U , independent of Y1 under P.
By Lemma 5.3.3,

P
[
max
n>S1

Yn > x

]
6 C1EYγ1x

−γ ,

which concludes the proof of the first part of the lemma. If Eξγργ < ∞, we may estimate
EYγ1 . Under Pω,

Y1
d
=

Yξ1−1+1∑
k=1

Gk,

where Gk ∼ Geo(λ1) are independent of Yξ1−1 and each other. Moreover, as was explained in
the proof of Lemma 5.3.2, Yξ1−1 ∼ Geo(1/ξ1) under Pω. Therefore

EωY2
1 = Eω

[
(Yξ1−1 + 1)(2ρ2

1 + ρ1) + (Y 2
ξ1−1 + Yξ1−1)ρ2

1

]
= 2ξ2

1ρ
2
1 + ξ1ρ1.

Jensen’s inequality and subadditivity of function x 7→ xγ/2 give

EYγ1 6 E
(
EωY2

1

)γ/2
6 2γ/2Eξγργ + Eξγ/2ργ/2 <∞,

which proves (5.3.17).
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5.4 Proof of Theorem 5.2.1

In the proof of Theorem 5.2.1 we will use the fact that the extinctions divide process Z into
independent epochs. That is, we first determine tail asymptotics of the maximum up to time
Sτ1 .

For any A > 0 denote σ = σ(A) = inf{n : Zn > A}. The next lemma is an analogue
of Lemma 4 in [18] and can be proved the very same way, that is by examining Eω[Zαk |Zk−1]

using methods we’ve seen in previous proofs.

Lemma 5.4.1. For any fixed A > 0, 0 < E[Zασ 1σ<τ1 ] <∞.

The main proof strategy is as follows: we choose sufficiently big A and argue that neither
the particles living before time Sσ, nor the descendants of the immigrants arriving after this
time contribute significantly to the examined maximum. Therefore its behavior is determined
by Zσ particles in the generation Sσ and their progeny.

Let us first take care of the particles alive before time Sσ.

Lemma 5.4.2. For any fixed A,

P
[

max
n<Sσ∧Sτ1

Zn > x

]
= o(x−α).

Proof. Fix A and let x > A. The only generations before time Sσ in which the population
size may exceed x are the unmarked ones. However, since Zk < A for k < σ, the maximum
of Z in generations Sk−1 + 1, . . . Sk − 1 is stochastically dominated by MA

k , the maximum of
Galton-Watson process with Geo(1/2) offspring distribution, unit immigration and A initial
particles, evolving for time ξk. Observe that

P
[

max
n<Sσ∧Sτ1

Zn > x

]
6 P

[
max
k<xδ/2

MA
k > x

]
+ P

[
τ1 > xδ/2

]
6 xδ/2P

[
MA

1 > x
]

+ P
[
τ1 > xδ/2

]
.

Since α+ δ 6 2, by Markov’s and Jensen’s inequalities,

P
[
MA

1 > x
]
6 x−α−δE

(
Eω(MA

1 )2
)(α+δ)/2

.

Lemma 5.3.2 implies that
Eω(MA

1 )2 6 16(ξ2
1 +Aξ1 +A2)

and thus, since x 7→ x(α+δ)/2 is subadditive,

xδ/2P
[
MA

1 > x
]
6 x−α−δ/216(α+δ)/2

(
Eξα+δ +A(α+δ)/2Eξ(α+δ)/2 +Aα+δ

)
= o(x−α).

The second term may be bounded using Lemma 5.3.1, that is

P
[
τ1 > xδ/2

]
6 e−cx

δ/2
Eecτ1 = o(x−α),

which ends the proof.
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The next lemma assures that the contribution of progeny of immigrants arriving after Sσ
is negligible. Recall that Y k counts the progeny of immigrants arriving in k’th block, that is
in generations Sk−1, Sk−1 + 1, . . . Sk − 1.

Lemma 5.4.3. Fix ε > 0. There exists A1(ε) such that for A > A1(ε),

P

[
τ1∑

k=σ+1

max
n>1

Y k
n > εx

]
6 εx−α. (5.4.1)

Proof. We have

P

[
τ1∑

k=σ+1

max
n>1

Y k
n > εx

]
= P

[ ∞∑
k=1

1σ6k<τ1 max
n>1

Y k+1
n > εx

]

6
∞∑
k=1

P
[
σ 6 k < τ1,max

n>1
Y k+1
n > εx/2k2

]
.

Observe that the event {σ 6 k < τ1} is defined in terms of Z1, . . . ZSk , while the process
Y k+1 evolves in the environment given by (ξj , ρj) for j > k + 1, hence is independent of
Z1, . . . ZSk . Moreover, the second part of Lemma 5.3.4 applied with γ = α gives tail bounds
on the maximum of Y k+1. That is,

∞∑
k=1

P
[
σ 6 k < τ1,max

n>1
Y k+1
n > εx/2k2

]
=
∞∑
k=1

P [σ 6 k < τ1]P
[
max
n>1

Y k+1
n > εx/2k2

]

6 C3

∞∑
k=1

P [σ 6 k < τ1] (εx/2k2)−α

= C32α(εx)−α
∞∑
k=1

k2αP [τ1 1σ<τ1 > k]

= C32α(2α+ 1)−1ε−αx−αE
[
τ2α+1

1 1σ<τ1

]
Since Eτ2α+1

1 <∞ and σ(A)
P−→ ∞ as A→∞, one may find A1(ε) such that for A > A1(ε)

(5.4.1) holds.

We already gave bounds on the generations sizes of particles alive before time Sσ and those
coming from immigrants arriving after that time. What is left is investigating behaviour of
the particles residing exactly in generation Sσ and their progeny.

For k > Sσ let Vσ,k be the number of progeny of the particles from generation Sσ residing
in generation k and let Vσ,n = Vσ,Sn ; in particular, Zσ = Vσ,σ. Recall the variables Ψm,k

defined in (5.3.6).

Lemma 5.4.4. For any ε > 0 there exists A2(ε) such that for A > A2(ε),

P
[∣∣∣∣max
k>Sσ

(Vσ,k + Vσ,k+1)− Zσ max
k>Sσ

(Ψσ+1,k + Ψσ+1,k+1)

∣∣∣∣ > εx, σ < τ1

]
6 εx−αE [Zασ 1σ<τ1 ] .
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Proof. We begin by estimating the difference of maxima within one block. Observe that the
potential Ψ is constant within each block, therefore for any n ∈ N,∣∣∣∣ max

Sn6k<Sn+1

(Vσ,k + Vσ,k+1)− Zσ max
Sn6k<Sn+1

(Ψσ+1,k + Ψσ+1,k+1)

∣∣∣∣
6

∣∣∣∣ max
Sn6k<Sn+1−1

(Vσ,k + Vσ,k+1)− 2ZσΠσ+1,n

∣∣∣∣
+ |Vσ,Sn+1−1 + Vσ,Sn+1 − ZσΠσ+1,n − ZσΠσ+1,n+1|

Let us estimate the first ingredient. Since

max
Sn6k<Sn+1−1

(Vσ,k + Vσ,k+1) = 2Vσ,n + max
Sn6k<Sn+1−1

(Vσ,k + Vσ,k+1 − 2Vσ,n) ,

we have∣∣∣∣ max
Sn6k<Sn+1−1

(Vσ,k + Vσ,k+1)− 2ZσΠσ+1,n

∣∣∣∣ 6 2

(
|Vσ,n − ZσΠσ+1,n|+ max

Sn6k<Sn+1

|Vσ,k − Vσ,n|
)
.

The second ingredient may be estimated simply by

|Vσ,Sn+1−1 + Vσ,Sn+1 − ZσΠσ+1,n − ZσΠσ+1,n+1|
6 |Vσ,n+1 − ZσΠσ+1,n+1|+ |Vσ,n − ZσΠσ+1,n|+ |Vσ,Sn+1−1 − Vσ,n|,

which gives∣∣∣∣ max
Sn6k<Sn+1

(Vσ,k + Vσ,k+1)− Zσ max
Sn6k<Sn+1

(Ψσ+1,k + Ψσ+1,k+1)

∣∣∣∣
6 3|Vσ,n − ZσΠσ+1,n|+ 3 max

Sn6k<Sn+1

|Vσ,k − Vσ,n|+ |Vσ,n+1 − ZσΠσ+1,n+1|.

Next, in view of∣∣∣∣max
k>Sσ

(Vσ,k + Vσ,k+1)− Zσ max
k>Sσ

(Ψσ+1,k + Ψσ+1,k+1)

∣∣∣∣
=

∣∣∣∣max
n>σ

max
Sn6k<Sn+1

(Vσ,k + Vσ,k+1)−max
n>σ

Zσ max
Sn6k<Sn+1

(Ψσ+1,k + Ψσ+1,k+1)

∣∣∣∣
6
∑
n>σ

∣∣∣∣ max
Sn6k<Sn+1

(Vσ,k + Vσ,k+1)− Zσ max
Sn6k<Sn+1

(Ψσ+1,k + Ψσ+1,k+1)

∣∣∣∣ ,
the above estimations give

P
[∣∣∣∣max
k>Sσ

(Vσ,k + Vσ,k+1)− Zσ max
k>Sσ

(Ψσ+1,k + Ψσ+1,k+1)

∣∣∣∣ > εx, σ < τ1

]
6 P

[
4
∑
n>σ

|Vσ,n − ZσΠσ+1,n| > εx/2, σ < τ1

]

+ P

[
3
∑
n>σ

max
Sn6k<Sn+1

|Vσ,k − Vσ,n| > εx/2, σ < τ1

]
.
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Both ingredients can be estimated by Lemma 5.3.3 applied with γ = α. Conditioned on
(σ, Z1, . . . ZSσ), the process (Vσ,n)n>Sσ is a sum of Zσ independent copies of the process U .
We have, on the set {σ < τ1},

P

[
4
∑
n>σ

|Vσ,n − ZσΠσ+1,n| > εx/2

∣∣∣∣∣σ, Z1, . . . ZSσ

]
6 C1(εx/8)−αZα/2σ ,

which gives

P

[
4
∑
n>σ

|Vσ,n − ZσΠσ+1,n| > εx/2, σ < τ1

]
6 C18α(εx)−αE

[
Zα/2σ 1σ<τ1

]
.

Similarly,

P

[
3
∑
n>σ

max
Sn<k<Sn+1

|Vσ,k − Vσ,n| > εx/2, σ < τ1

]
6 C16α(εx)−αE

[
Zα/2σ 1σ<τ1

]
.

Therefore, for some constant C2,

P
[∣∣∣∣max
k>Sσ

(Vσ,k + Vσ,k+1)− Zσ max
k>Sσ

(Ψσ+1,k + Ψσ+1,k+1)

∣∣∣∣ > εx, σ < τ1

]
6 C2(εx)−αE

[
Zα/2σ 1σ<τ1

]
.

Finally, for any fixed ε > 0, since Zσ > A, we have

E
[
Zα/2σ 1σ<τ1

]
6 A−α/2E [Zασ 1σ<τ1 ]

and one may choose A2(ε) large enough for the claim to hold.

Lemma 5.4.5. There exists cΨ ∈ (0,∞) such that for any fixed A > 0,

P
[
Zσ max

k>Sσ
(Ψσ+1,k + Ψσ+1,k+1) > x, σ < τ1

]
∼ cΨE [Zασ 1σ<τ1 ]x−α. (5.4.2)

Proof. Since the sequence Ψσ+1,k is constant on the blocks between marked points, we have

max
k>Sσ

(Ψσ+1,k + Ψσ+1,k+1) = max
n>σ

(
21ξn+1>1 ∨(1 + ρn+1)

)
Πσ+1,n.

Observe that

log
((

21ξn+1>1 ∨(1 + ρn+1)
)

Π1,n

)
=

n∑
k=1

log(ρk) + log(21ξn+1>1 ∨(1 + ρn+1))

is a perturbed random walk. By Theorem 1.3.8 in [17], assumptions (A) guarantee that

P
[
max
n>0

(21ξn+1>1 ∨(1 + ρn+1))Π1,n > x

]
∼ cΨx

−α
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for a constant cΨ ∈ (0,∞) given by

cΨ = E(2α 1ξ1>1 ∨(1 + ρ1)α −max
n>2

(2α 1ξn+1>1 ∨(1 + ρn+1)α)Πα
1,n)+.

Note that the variables Zσ 1σ<τ1 and maxn>σ(21ξn+1>1 ∨(1+ρn+1))Πσ+1,n are independent
under P. Therefore, by Breiman’s lemma,

P
[
Zσ max

k>Sσ
(Ψσ+1,k + Ψσ+1,k+1) > x, σ < τ1

]
= P

[
Zσ 1σ<τ1 ·max

n>σ
(21ξn+1>1 ∨(1 + ρn+1))Πσ+1,n > x

]
∼ E [Zασ 1σ<τ1 ] cΨx

−α.

The rest of the proof is standard. First, all the lemmas proven so far allow us to determine
the asymptotics of the maximum in time [0, Sτ1). Then we use the fact that the extinctions
divide our process into independent pieces.

Proposition 5.4.6. For some constant cM > 0,

P
[

max
06n<Sτ1

(Zn + Zn+1) > x

]
∼ cMx−α.

Proof. Fix ε > 0 and take A > A(ε) := max{A1(ε), A2(ε)}. First, observe that

P
[

max
Sσ6n<Sτ1

(Zn + Zn+1) > x, σ < τ1

]
6 P

[
max

06n<Sτ1
(Zn + Zn+1) > x

]
6 P

[
max

Sσ6n<Sτ1
(Zn + Zn+1) > x, σ < τ1

]
+ P

[
max

n<Sσ∧Sτ1
(Zn + Zn+1) > x

]
.

Lemma 5.4.2 ensures that for large enough x,

P
[

max
n<Sσ∧Sτ1

(Zn + Zn+1) > x

]
6 P

[
2 max
n<Sσ∧Sτ1

Zn > x

]
6 εx−α.

Recall that by Y k = (Y k
j )j∈Z we denoted the process counting the progeny of immigrants

arriving in k’th block, with the convention Y k
j = 0 for j < 0. For n > Sσ,

Zn = Vσ,n +

τ1∑
k=σ+1

Y k
n−Sk−1

,

thus

P
[

max
Sσ6n<Sτ1

(Vσ,n + Vσ,n+1) > x, σ < τ1

]
6 P

[
max

Sσ6n<Sτ1
(Zn + Zn+1) > x, σ < τ1

]
6 P

[
max

Sσ6n<Sτ1
(Vσ,n + Vσ,n+1) > (1− ε)x, σ < τ1

]
+ P

[
2

τ1∑
k=σ+1

max
n>1

Y k
n > εx

]
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and (5.4.1) ensures that

P

[
2

τ1∑
k=σ+1

max
n>1

Y k
n > εx

]
6 εx−α.

Finally,

P
[
Zσ max

k>Sσ
(Ψσ,k + Ψσ,k+1) > (1 + ε)x, σ < τ1

]
− P

[∣∣∣∣max
k>Sσ

(Vσ,k + Vσ,k+1)− Zσ max
k>Sσ

(Ψσ,k + Ψσ,k+1)

∣∣∣∣ > εx, σ < τ1

]
6 P

[
max

Sσ6n<Sτ1
(Vσ,n + Vσ,n+1) > x, σ < τ1

]
6 P

[
Zσ max

k>Sσ
(Ψσ,k + Ψσ,k+1) > (1− ε)x, σ < τ1

]
+ P

[∣∣∣∣max
k>Sσ

(Vσ,k + Vσ,k+1)− Zσ max
k>Sσ

(Ψσ,k + Ψσ,k+1)

∣∣∣∣ > εx, σ < τ1

]
,

and by Lemma 5.4.4,

P
[∣∣∣∣max
k>Sσ

(Vσ,k + Vσ,k+1)− Zσ max
k>Sσ

(Ψσ,k + Ψσ,k+1)

∣∣∣∣ > εx, σ < τ1

]
6 εx−αE [Zασ 1σ<τ ] .

Putting things together and invoking Lemma 5.4.5 we get that for any ε > 0 such that
ε(1− ε)α < cΨ and for any A > A(ε),

0 < ((1 + ε)−αcΨ − ε)E [Zασ 1σ<τ1 ]

6 lim inf
x→∞

xαP
[

max
06n<Sτ1

(Zn + Zn+1) > x

]
6 lim sup

x→∞
xαP

[
max

06n<Sτ1
(Zn + Zn+1) > x

]
6 ((1− 2ε)−αcΨ + ε)E [Zασ 1σ<τ1 ] + 2ε <∞.

Observe that this relation implies that both the limits

lim
x→∞

xαP
[

max
06n<Sτ1

(Zn + Zn+1) > x

]
and lim

A→∞
E
[
Zασ(A) 1σ(A)<τ1

]
exist, are positive and satisfy

lim
x→∞

xαP
[

max
06n<Sτ1

(Zn + Zn+1) > x

]
= cΨ lim

A→∞
E
[
Zασ(A) 1σ(A)<τ1

]
=: cM .

Due to Lemma 5.2.3 and the relation (5.3.2), the next result implies Theorem 5.2.1.

Theorem 5.4.7. Under assumptions (A),

P
[
n−1/α max

06k<Sn
(Zk + Zk+1) > x

]
n→∞−−−→ 1− exp

(
− cM
Eτ1

x−α
)
.
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Proof. Since the extinctions divide the process Z into independent epochs, an immediate
corollary of Proposition 5.4.6 is that

P
[
n−1/α max

06k<Sτn
(Zk + Zk+1) > x

]
n→∞−−−→ 1− exp(−cMx−α).

Lemma 5.3.1 implies that Eτ1 <∞. Therefore passing from the maximum up to time Sτn
to the maximum up to Sn may be done exactly as in the proof of Lemma 5.2.3.

5.5 Proof of Theorem 5.2.2

As we have seen in the proof of Theorem 5.2.1, the limiting behaviour of maxima in case (A)

comes from the tail asymptotics of variableMΨ defined in (5.3.7). The assumption Eξα+δ <∞
implies that for every k, maxj<ξk Y

k
j is negligible. In terms of the random walk, this means

that the time the walker spends in a block when crossing it for the first time is negligible.
As we will see, under assumptions (B) it is not; the maximal local time is obtained when the
walker crosses a particularly long block for the first time, by their visits to sites within this
block and potentially excursions to the left.

Consider a simple symmetric random walk on Z and denote by L̄k(n) the number of
times the walk visits site k before reaching n. Consider (L̄s(n))s∈[0,n] being a piecewise linear
interpolation of (L̄k(n))06k6n. The Ray-Knight theorem (see [11, Theorem 2.15]) states that(

1

n
L̄n(1−t)(n)

)
t∈[0,1]

⇒ (Bt)t∈[0,1]

in C[0, 1] as n→∞, where B is a squared Bessel process which may be defined as

Bt = ||W (t)||2, (5.5.1)

forW (t) = (W1(t),W2(t)) being a standard two-dimensional Brownian motion withW (0) = 0.
By the continuous mapping theorem,(

1

n
max
k6n

L̄k(n),
1

n
L̄0(n)

)
⇒ (MB, B(1)), (5.5.2)

where MB = sup{Bt : t ∈ [0, 1]}.
With this at hand, we may inspect the maximal local time that the RWSRE obtains when

crossing a (long) block between marked points for the first time. To this end, consider a walk
starting at 0 in the environment that has marked points only on the non-positive half-line,
and stop it when it reaches point N . By Ray-Knight theorem, the limit of maximal local time
in the interval [1, N ], where the walk is symmetric, scaled by N , is MB. As we have seen in
the proof of Theorem 5.2.1, the number of visits in the negative half-line should be controlled
by the number of visits to 1 and the maxima of the potential Ψ.

In the associated branching process, the steps of the walk during its first crossing of a block
between marked points are counted by the process Y . Therefore our goal is to understand
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72 Chapter 5. Favourite sites of RWSRE

the growth of maximal generation in the process Y as the size of the first block – in which
the immigrants arrive – tends to infinity. To this end, for any N ∈ N let Y (N) be a BPSRE
evolving in an environment with fixed ξ1 = N and such that the immigrants arrive only in
generations up to N − 1’th.

Lemma 5.5.1. Under assumptions (B),

1

N
max
k>0

(Y
(N)
k + Y

(N)
k+1 )⇒M∞ as N →∞, (5.5.3)

where M∞
d
= max(MB, B(1)MΨ/2) and MΨ is a copy of the variable defined in (5.3.7) inde-

pendent of the Bessel process B.

Proof. To simplify the notation we shall write Y instead of Y (N). Observe that (5.5.2) and
the duality between branching process and random walk imply(

1

N
max
k6N−2

(Yk + Yk+1),
1

N
(YN−1 + YN−2)

)
⇒ (MB, B(1)).

However, since the particles in generation N − 1 are children of those from N − 2’th and an
immigrant, born with distribution Geo(1/2), we have

E (YN−1 − YN−2 − 1)2 = E(YN−1 − E [YN−1 |YN−2])2 = 2(EYN−2 + 1) = 2(N − 1),

which, together with Chebyshev’s inequality, implies that (YN−1 − YN−2)/N
P−→ 0 and thus(

1

N
max
k6N−2

(Yk + Yk+1),
YN−1

N

)
⇒ (MB, B(1)/2).

Moreover, the variables Yk for k 6 N − 1 are independent of the environment, in particular of
Ψ1,n, n > 0.

From here on we proceed as in the proof of Lemma 5.4.4, to show that the maximum in
generations after N − 1’th is comparable with YN−1MΨ. That is, we use Lemma 5.3.3 applied
with γ = β to obtain, for some constant C > 0,

P
[∣∣∣∣max
k>N

(Yk + Yk+1)− Y1 max
k>N

(Ψ2,k + Ψ2,k+1)

∣∣∣∣ > x

]
6 Cx−βEYβ/21 (5.5.4)

for any x > 0. The particles in the first marked generation S1 = N are born with distribution
Geo(λ1) from those counted by YN−1 and an immigrant. Therefore we have EωY1 = Nρ1,
and by Jensen’s inequality,

EYβ/21 6 Nβ/2Eρβ/2.

Moreover, we may calculate quenched moments of Y1 conditioned on YN−1 to get an analogue
of (5.3.15). We obtain

E |Y1 − ρ1YN−1|β 6 E
(
Eω(Y1 − ρ1YN−1)2

)β/2
= E

(
(EωYN−1(ρ2

1 + ρ1) + 2ρ2
1 + ρ1

)β/2
6 (Nβ/2 + 1)(2β/2Eρβ + Eρβ/2),

(5.5.5)
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where the last inequality follows from subadditivity of x 7→ xβ/2 and the fact that EωYN−1 =

N−1. Observe that maxk>N (Ψ2,k+Ψ2,k+1) 6 2+MΨ,2 and by (5.3.8), EMβ
Ψ <∞. Therefore,

since (YN−1,Y1, ρ1) is independent of (ρj)j>2, we have

P
[∣∣∣∣Y1 max

k>N
(Ψ2,k + Ψ2,k+1)− ρ1YN−1 max

k>N
(Ψ2,k + Ψ2,k+1)

∣∣∣∣ > x

]
6 x−βE(2 +MΨ)βE|Y1 − ρ1YN−1|β 6 C ′x−β(Nβ/2 + 1)

(5.5.6)

for some constant C ′ > 0 and any x > 0.
Observe that (5.5.4) and (5.5.6) imply that for any fixed ε > 0,

P
[∣∣∣∣max
k>N

(Yk + Yk+1)− YN−1 max
k>N

(Ψ1,k + Ψ1,k+1)

∣∣∣∣ > εN

]
6 P

[∣∣∣∣max
k>N

(Yk + Yk+1)− Y1 max
k>N

(Ψ2,k + Ψ2,k+1)

∣∣∣∣ > εN/2

]
+ P

[∣∣∣∣Y1 max
k>N

(Ψ2,k + Ψ2,k+1)− ρ1YN−1 max
k>N

(Ψ2,k + Ψ2,k+1)

∣∣∣∣ > εN/2

]
6 (εN/2)−β

(
CNβ/2Eρβ/2 + C ′(Nβ/2 + 1)

)
= O(N−β/2).

Finally, by (5.5.5), for any ε > 0,

P [|Y1 − ρ1YN−1| > εN ] 6 ε−β(N−β/2 +N−β)(2β/2Eρβ + Eρβ/2) = O(N−β/2),

therefore the weak limit of

1

N
max
k>0

(Yk + Yk+1) =
1

N
max

(
max
k6N−2

(Yk + Yk+1), YN−1 + Y1,max
k>N

(Yk + Yk+1)

)
is the same as that of

1

N
max

(
max
k6N−2

(Yk + Yk+1), YN−1(1 + ρ1), YN−1 max
k>N

(Ψ1,k + Ψ1,k−1)

)
=

1

N
max

(
max
k6N−2

(Yk + Yk+1), YN−1MΨ,1

)
which is max(MB, B(1)MΨ/2) by the continuous mapping theorem.

Remark 5.5.2. Under assumptions (B), EMβ+δ
∞ <∞. Indeed, by (5.5.1),

M2
B = sup

{(
W1(t)2 +W2(t)2

)2
: t ∈ [0, 1]

}
,

whereW1,W2 are independent one-dimensional Brownian motions. Doob’s maximal inequality
applied to W1,W2 implies that EM2

B < ∞. Since β + δ 6 2, it follows that EMβ+δ
B < ∞.

Moreover, by (5.3.8), EMβ+δ
Ψ <∞, and since MΨ and B are independent, we have

EMβ+δ
∞ 6 EMβ+δ

B E(1 +MΨ/2)β+δ <∞.
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Recall that the process Y k counts the progeny of immigrants arriving in k’th block. Since
Lemma 5.5.1 suggests that the maximum of process Y k should be comparable with ξkM∞
when ξk is large, we begin the proof of Theorem 5.2.2 by distinguishing large blocks in the
environment. Recall the sequence (an)n∈N defined in (5.2.1). Fix ε > 0 and let

In,ε = {k 6 n : ξk > εan}, Icn,ε = {k 6 n : ξk 6 εan}.

For fixed n and k 6 n, we will say that k’th block is large if k ∈ In,ε, and small otherwise.
It follows from the definition of the sequence (an)n∈N and regular variation of the tails of

ξ that for any x > 0,

nP[ξ > xan]→ x−β, n→∞. (5.5.7)

Therefore, by Proposition 3.21 in [25],

n∑
k=1

δ(ξk/an,k/n) ⇒ Pµ, (5.5.8)

where Pµ is a Poisson point process on (0,∞] × [0,∞) with intensity measure dµ(x, t) =

βx−β−1dxdt. In particular, as n → ∞, the sequence of variables |In,ε|, which count the
number of large blocks, converges weakly to Poisson distribution with parameter ε−β .

We begin by showing that all the progeny of immigrants arriving in small blocks is negli-
gible.

Proposition 5.5.3. There is a constant C5 such that for any ε > 0 and ε̄ > 0,

lim sup
n→∞

P

max
j>1

∑
k∈Icn,ε

Y k
j−Sk−1

> ε̄an

 6 C5ε̄
−β−δεδ.

Proof. We will use the fact that the extinction times divide our process into i.i.d. pieces. Let

ηn = inf{k > 0 : τk > n}.

Since Eτ1 < ∞ by Lemma 5.3.1, the strong law of large numbers implies ηn/n → η := 1/Eτ
as n→∞, P-a.s. We have

P

max
j>1

∑
k∈Icn,ε

Y k
j−Sk−1

> ε̄an

 6 P

max
j>1

∑
k6τ2nη

Y k
j−Sk−1

1ξk6εan > ε̄an


+ P [|η − ηn/n| > η] .

The second term tends to 0 as n → ∞. Since the extinctions divide our process into i.i.d.
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pieces, we have

P

max
j>1

∑
k6τ2nη

Y k
j−Sk−1

1ξk6εan > ε̄an

 6
2nη∑
m=1

P

max
j>1

τm∑
k=τm−1

Y k
j−Sk−1

1ξk6εan > ε̄an


= 2nη P

[
max
j>1

τ1∑
k=0

Y k
j−Sk−1

1ξk6εan > ε̄an

]

6 2nη P

[
τ1∑
k=0

max
j>1

Y k
j 1ξk6εan > ε̄an

]

= 2nη P

[ ∞∑
k=1

1k6τ1 max
j>1

Y k
j 1ξk6εan > ε̄an

]

6 2nη

∞∑
k=1

P [τ1 > k]P
[
max
j>1

Y k
j 1ξk6εan > ε̄an/2k

2

]
,

where in the last line we used the fact that {τ1 > k} and the process Y k are independent.
Since the environment is given by an i.i.d. sequence, it is enough to estimate the tails of

the maximum of the process (Yj 1ξ16εan)j>1. By Lemma 5.3.4 applied with γ = β + δ,

P
[
max
j>1

Yj 1ξ16εan > x

]
6 C2x

−γ
(

E
(
EωY

2
ξ1−1 1ξ16εan

)γ/2
+ EYγ1 1ξ16εan

)
.

As we have calculated in the proof of Lemma 5.3.4,

EωY
2
ξ1−1 1ξ16εan = ξ1(ξ1 − 1)1ξ16εan , EωY2

1 = (2ξ2
1ρ

2
1 + ξ1ρ1)1ξ16εan ,

therefore
E
(
EωY

2
ξ1−1 1ξ16εan

)γ/2
6 Eξγ 1ξ6εan

and
EYγ1 1ξ16εan 6 E

(
EωY2

1 1ξ16εan

)γ/2
6
(

2γ/2Eργ + Eργ/2
)

Eξγ 1ξ6εan .

Putting things together, for some constant C > 0 and any x > 0,

P
[
max
j>1

Yj 1ξ16εan > x

]
6 Cx−γEξγ 1ξ6εan 6 Cx−γ

∫ εan

0
tγ−1P[ξ > t]dt.

By Karamata’s theorem ([3], Theorem 1.5.11) and (5.5.7),∫ εan

0
tγ−1P[ξ > t]dt ∼ 1

γ + β
(εan)γP[ξ > εan] ∼ 1

γ + β
εγ−βaγnn

−1.

Using those estimates, we obtain, for some constants C,C ′ > 0,

P

max
j>1

∑
k6τ2nη

Y k
j−Sk−1

1{ξk6εan} > ε̄an

 6 Cn
∞∑
k=1

P[τ1 > k]
(
ε̄an/2k

2
)−γ

εγ−βaγnn
−1

6 C ′ε̄−γεγ−βEτ2γ+1
1 ,

which finishes the proof since γ = β + δ and Eτ2γ+1
1 <∞ by Lemma 5.3.1.
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The next step is to investigate the maximal generations among the progeny of immigrants
from large blocks. Although it may happen that the descendants of particles from several large
blocks coexist in one generation of the process Z, we will show later that it is unlikely, so that
we may begin by investigating the maxima of |In,ε| independent processes, each representing
progeny of immigrants from a large block. To this end, assume that our probability space
contains variables

{
(Y

j,(N)
k )k∈N : j,N ∈ N

}
such that

• the processes (Y
j,(N)
k )k∈N are i.i.d. copies of (Y

(N)
k )k∈N,

• the family
{

(Y
j,(N)
k )k∈N : j,N ∈ N

}
is independent of the environment {(ξk, λk)}k∈Z.

For any j,N ∈ N denoteM j
N = maxk>0(Y

j,(N)
k +Y

j,(N)
k+1 ) and let D̄j,n = {Yj,(ξj)√

n
= 0}. Observe

that the event D̄j,n means that the process Y j,(ξj) went extinct at most at its
√
n’th marked

generation.

Proposition 5.5.4. Fix ε > 0 and let An ∈ σ(In,ε) be such that P[An] → 1 as n → ∞. For
any x > 0,

lim
n→∞

P
[

max
j∈In,ε

M j
ξj
1D̄j,n

> xan, An

]
= 1− exp

(
−x−βEMβ

∞ 1M∞<x/ε−ε
−βP[M∞ > x/ε]

)
.

Proof. Observe that due to our assumptions the event D̄j,n depends only on ξj and the process
Y j,(ξj). Therefore we investigate a maximum of variables which are i.i.d. under P.

Recall that |In,ε| converges in distribution to Poiss(ε−β). Moreover, conditioning on
|In,ε| = k, the examined maximum is a maximum of k independent variables with distribution
given by

P
[
Mξ 1D̄n ∈ ·

∣∣∣ ξ > εan

]
,

for ξ independent of {Y (N),MN : N ∈ N} and D̄n = {Y(ξ)√
n

= 0}. In particular,

P
[

max
k∈In,ε

Mk
ξk
1D̄k,n

> xan

]
= 1− E

[
(1− P

[
Mξ > xan, D̄n | ξ > εan

]
)|In,ε| 1An

]
= 1− E

[
(1− P

[
Mξ > xan, D̄n | ξ > εan

]
)|In,ε|

]
+ o(1),

(5.5.9)

where the second equality follows from

E
[
(1− P

[
Mξ > xan, D̄n | ξ > εan

]
)|In,ε| 1Acn

]
6 P[Acn].

Note that, since the extinction time of the process Y (ξ) is dominated by τ1, Lemma 5.3.1
implies

P[D̄c
n] 6 P[τ1 >

√
n] 6 e−c

√
nEecτ1 ,

and by (5.5.7),

P[D̄c
n | ξ > εan] 6 e−c

√
nEecτ1P[ξ > εan]−1 ∼ Eecτ1εβne−c

√
n → 0
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as n→∞. Therefore, for any fixed ε̄ > 0, for n large enough,

P
[
Mξ > xan, D̄

c
n | ξ > εan

]
6 ε̄. (5.5.10)

By Lemma 5.5.1, MN/N ⇒ M∞ as N → ∞. Observe that the distribution of M∞
is continuous and thus appropriate cumulative distribution functions converge uniformly; in
particular, for large enough n,

sup
y>0
|P [Mξ > y | ξ > εan]− P [M∞ > y/ξ | ξ > εan]| < ε̄ (5.5.11)

for M∞ independent of ξ. Observe that

P [M∞ > xan/ξ | ξ > εan] =
P[ξM∞ > xan, ξ > εan]

P[ξ > εan]

=
1

P[ξ > εan]

(∫
[0,x/ε)

P[ξ > xan/t]P[M∞ ∈ dt] +

∫
[x/ε,∞)

P[ξ > εan]P[M∞ ∈ dt]

)

=

∫
[0,x/ε)

P[ξ > xan/t]

P[ξ > εan]
P[M∞ ∈ dt] + P[M∞ > x/ε].

By uniform convergence theorem for regularly varying functions (see (B.1.2) in [4]), for n large
enough,

sup
c>1

∣∣∣∣P[ξ > cεan]

P[ξ > εan]
− c−β

∣∣∣∣ < ε̄,

which means that ∣∣∣∣∣
∫

[0,x/ε)

P[ξ > xan/t]

P[ξ > εan]
−
( x
tε

)−β
P[M∞ ∈ dt]

∣∣∣∣∣ < ε̄.

Hence ∣∣∣P[M∞ > xan/ξ | ξ > εan]−
(
x−βεβEMβ

∞ 1M∞<x/ε +P[M∞ > x/ε]
)∣∣∣ < ε̄,

which together with (5.5.11) implies∣∣∣P [Mξ > xan | ξ > εan]−
(
x−βεβEMβ

∞ 1M∞<x/ε +P[M∞ > x/ε]
)∣∣∣ < 2ε̄. (5.5.12)

Putting the estimates (5.5.10) and (5.5.12) to (5.5.9) and using the fact that |In,ε| ⇒ Poiss(ε−β),
we obtain

1− exp
(
−ε−β

(
x−βεβEMβ

∞ 1M∞<x/ε +P[M∞ > x/ε]− 3ε̄
))

6 lim inf
n→∞

P
[
max
k6n

Mk
ξk
1ξk>εan > xan

]
6 lim sup

n→∞
P
[
max
k6n

Mk
ξk
1ξk>εan > xan

]
6 1− exp

(
−ε−β

(
x−βεβEMβ

∞ 1M∞<x/ε +P[M∞ > x/ε] + 3ε̄
))

,

which finishes the proof since ε̄ is arbitrary.
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We are now ready to prove Theorem 5.2.2, rephrased into the setting of the associated
branching process.

Theorem 5.5.5. Under assumptions (B),

P
[
a−1
n max

06k<Sn
(Zk + Zk+1) > x

]
n→∞−−−→ 1− exp

(
−EMβ

∞x
−β
)
.

Proof. Fix ε > 0. For any ε̄ > 0,

P

max
j>1

∑
k∈In,ε

(Y k
j−Sk−1

+ Y k
j−Sk−1+1) > xan

 6 P
[
max
j<Sn

(Zj + Zj+1) > xan

]

6 P

2 max
j>1

∑
k∈Icn,ε

Y k
j−Sk−1

> ε̄an

+ P

max
j>1

∑
k∈In,ε

(Y k
j−Sk−1

+ Y k
j−Sk−1+1) > (x− ε̄)an

 .
(5.5.13)

Note that because of (5.5.8) we expect that for large n the set In,ε should be distributed
rather uniformly on {1, . . . n}, so that the large blocks are far from each other. Indeed, since
nP [ξ > εan]→ ε−β , for any sequence bn such that bn = o(n),

P [(∃k, l ∈ In,ε) k 6= l, |k − l| 6 bn] 6 nP[ξ > εan] · bnP[ξ > εan]→ 0 as n→∞.

That is, with high probability, large blocks are at distance at least bn from each other. On the
other hand, we know that the extinction occurs very often in our process, which should mean
that as the process evolves, no two bloodlines of immigrants from large blocks coexist at one
time. Let

Dk,n =
{
Yk√n = 0

}
be an event that the progeny of immigrants from k’th block does not survive more than

√
n

blocks. Then, by Lemma 5.3.1,

P

⋃
k6n

Dc
k,n

 6 nP[τ1 >
√
n] 6 ne−c

√
nEecτ → 0

as n→ 0. Therefore the probability of the set

Dn =
⋂
k6n

Dk,n

converges to 1 as n→∞ and so does the probability of

An = {(∀k, l ∈ In,ε) k 6= l =⇒ |k − l| > 2
√
n}.

Moreover, on the set An ∩ Dn, the progeny of immigrants from each large block dies out
before the next large block occurs. That is, maxj>1

∑
k∈In,ε(Y

k
j−Sk−1

+ Y k
j−Sk−1+1) is really
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a maximum of independent maxima of Y k such that k ∈ In,ε. Therefore,

P

max
j>1

∑
k∈In,ε

(Y k
j−Sk + Y k

j−Sk+1) > xan, An ∩Dn

 = P
[

max
k∈In,ε

Mk
ξk
1D̄k,n

> xan, An

]
.

By Proposition 5.5.4, this quantity converges to

1− exp
(
−x−βEMβ

∞ 1M∞<x/ε−ε
−βP[M∞ > x/ε]

)
as n→∞. Going back to (5.5.13), we have

1− exp
(
−x−βEMβ

∞ 1M∞<x/ε−ε
−βP[M∞ > x/ε]

)
6 lim inf

n→∞
P
[
max
j<Sn

(Zj + Zj+1) > xan

]
.

(5.5.14)
On the other hand, by Proposition 5.5.3,

lim sup
n→∞

P

2 max
j>1

∑
k∈Icn,ε

Y k
j−Sk−1

> ε̄an

 6 C5(ε̄/2)−β−δεδ,

which means that

lim sup
n→∞

P
[
max
j<Sn

(Zj + Zj+1) > xan

]
6 C5(ε̄/2)−β−δεδ

+ 1− exp
(
−(x− ε̄)−βEMβ

∞ 1M∞<(x−ε̄)/ε−ε−βP[M∞ > (x− ε̄)/ε]
)
.

(5.5.15)

Observe that, since EMβ+δ
∞ <∞ (see Remark 5.5.2), we have

ε−βP[M∞ > x/ε] 6 εδx−β−δEMβ+δ
∞ → 0 as ε→ 0,

while by the monotone convergence theorem,

EMβ
∞ 1M∞<x/ε → EMβ

∞ as ε→ 0.

Therefore passing with ε to 0 in (5.5.14) gives

1− exp
(
−x−βEMβ

∞

)
6 lim inf

n→∞
P
[
max
j<Sn

(Zj + Zj+1) > xan

]
,

and similarly in (5.5.15),

lim sup
n→∞

P
[
max
j<Sn

(Zj + Zj+1) > xan

]
6 1− exp

(
−(x− ε̄)−βEMβ

∞

)
,

which ends the proof since ε̄ > 0 is arbitrary.
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